The end of AIDS: HIV infection as a chronic disease

The success of antiretroviral therapy has led some people to now ask whether the end of AIDS is possible. For patients who are motivated to take therapy and who have access to lifelong treatment, AIDS-related illnesses are no longer the primary threat, but a new set of HIV-associated complications have emerged, resulting in a novel chronic disease that for many will span several decades of life. Treatment does not fully restore immune health; as a result, several inflammation-associated or immunodeficiency complications such as cardiovascular disease and cancer are increasing in importance. Cumulative toxic effects from exposure to antiretroviral drugs for decades can cause clinically-relevant metabolic disturbances and end-organ damage. Concerns are growing that the multimorbidity associated with HIV disease could affect healthy ageing and overwhelm some health-care systems, particularly those in resource-limited regions that have yet to develop a chronic care model fully. In view of the problems inherent in the treatment and care for patients with a chronic disease that might persist for several decades, a global effort to identify a cure is now underway.
References

2. Nakagawa F • May M • Phillips A

3. Fauci AS • Folkers GK
Toward an AIDS-free generation. *JAMA.* 2012; 308: 343-344

4. Gardner EM • McLees MP • Steiner JF • Del Rio C • Burman WJ
5. Gardner EM • McLees MP • Steiner JF • Del Rio C • Burman WJ
 The spectrum of engagement in HIV care and its relevance to test-and-treat strategies
 for prevention of HIV infection.
 Clin Infect Dis. 2011; 52: 793-800
 View in Article
 Scopus (989) • PubMed • Crossref • Google Scholar

6. Piot P • Quinn TC
 Response to the AIDS pandemic—a global health model.
 View in Article
 Scopus (70) • PubMed • Crossref • Google Scholar

7. Freiberg MS • Chang CC • Kuller LH • et al.
 HIV infection and the risk of acute myocardial infarction.
 View in Article
 Scopus (442) • PubMed • Crossref • Google Scholar

8. Currier JS • Taylor A • Boyd F • et al.
 Coronary heart disease in HIV-infected individuals.
 J Acquir Immune Defic Syndr. 2003; 33: 506-512
 View in Article
 Scopus (352) • PubMed • Crossref • Google Scholar
10. Wester CW • Koethe JR • Shepherd BE • et al.

View in Article

Scopus (34) • PubMed • Crossref • Google Scholar

11. Murray CJ • Vos T • Lozano R • et al.

View in Article

Scopus (3853) • PubMed • Summary • Full Text • Full Text PDF • Google Scholar

12. Bloomfield GS • Hogan JW • Keter A • et al.

View in Article

Scopus (59) • PubMed • Crossref • Google Scholar

13. Baker JV • Peng G • Rapkin J • et al. •
the Terry Beirn Community Programs for Clinical Research on AIDS (CPCRA)
CD4+ count and risk of non-AIDS diseases following initial treatment for HIV
15. Grulich AE • van Leeuwen MT • Falster MO • Vajdic CM

Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis.
Lancet. 2007; 370: 59-67

16. Armah KA • McGinnis K • Baker J • et al.

HIV status, burden of comorbid disease and biomarkers of inflammation, altered coagulation and monocyte activation.

17. Ryom L • Mocroft A • Kirk O • et al. • ,the D:A:D Study Group

J Infect Dis. 2013; 207: 1359-1369
19. Hunt PW • Martin JN • Sinclair E • et al.
 T cell activation is associated with lower CD4+ T cell gains in human
 immunodeficiency virus-infected patients with sustained viral suppression during
 antiretroviral therapy.
 J Infect Dis. 2003; 187: 1534-1543

20. Neuhaus J • Jacobs Jr, DR • Baker JV • et al.
 Markers of inflammation, coagulation, and renal function are elevated in adults with
 HIV infection.
 J Infect Dis. 2010; 201: 1788-1795

21. Kuller LH • Tracy R • Bellosso W • et al. •, the INSIGHT SMART Study Group
 Inflammatory and coagulation biomarkers and mortality in patients with HIV
 infection.

22. Sandler NG • Wand H • Roque A • et al. •, the INSIGHT SMART Study Group
 Plasma levels of soluble CD14 independently predict mortality in HIV infection.
 J Infect Dis. 2011; 203: 780-790

25. Battegay M • Nüesch R • Hirschel B • Kaufmann GR
 Immunological recovery and antiretroviral therapy in HIV-1 infection.
 Lancet Infect Dis. 2006; 6: 280-287

26. Favre D • Mold J • Hunt PW • et al.
 Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease.
 Sci Transl Med. 2010; 2: 32ra6

27. Doitsh G • Cavrois M • Lassen KG • et al.
28. Hunt PW • Brenchley J • Sinclair E • et al.
 Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy.
 J Infect Dis. 2008; 197: 126-133

29. Hatano H • Jain V • Hunt PW • et al.
 Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells.
 J Infect Dis. 2013; 208: 50-56

30. Srinivasula S • Lempicki RA • Adelsberger JW • et al.
 Differential effects of HIV viral load and CD4 count on proliferation of naive and memory CD4 and CD8 T lymphocytes.
 Blood. 2011; 118: 262-270

31. Hunt PW • Cao HL • Muzoora C • et al.
 Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy.
 AIDS. 2011; 25: 2123-2131
33. Justice AC • Freiberg MS • Tracy R • et al.
Does an index composed of clinical data reflect effects of inflammation, coagulation, and monocyte activation on mortality among those aging with HIV?.
Clin Infect Dis. 2012; 54: 984-994

34. Funderburg NT • Mayne E • Sieg SF • et al.
Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation.
Blood. 2010; 115: 161-167

35. Pandrea I • Cornell E • Wilson C • et al.
Coagulation biomarkers predict disease progression in SIV-infected nonhuman primates.
Blood. 2012; 120: 1357-1366
37. Rajasuriar R • Khoury G • Kamarulzaman A • French MA • Cameron PU • Lewin SR
 Persistent immune activation in chronic HIV infection: do any interventions work?.
 AIDS. 2013; 27: 1199-1208
 View in Article
 PubMed • Google Scholar

38. Buzón MJ • Massanella M • Llibre JM • et al.
 HIV-1 replication and immune dynamics are affected by raltegravir intensification of
 HAART-suppressed subjects.
 Nat Med. 2010; 16: 460-465
 View in Article
 Scopus (360) • PubMed • Crossref • Google Scholar

39. Hatano H • Strain MC • Scherzer R • et al.
 Increase in 2-LTR circles and decrease in D-dimer after raltegravir intensification in
 treated HIV-infected patients: a randomized, placebo-controlled trial.
 J Infect Dis. 2013; (published online Aug 23.)10.1093/infdis/jit453 (published online Aug
 23.)
 View in Article
 Scopus (97) • Crossref • Google Scholar

40. Hunt PW • Martin JN • Sinclair E • et al.
 Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete
 CD4+ T cell recovery on antiretroviral therapy.
 J Infect Dis. 2011; 203: 1474-1483
highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment.

View in Article

Scopus (82) • PubMed • Crossref • Google Scholar

42. Brenchley JM • Price DA • Schacker TW • et al.
Microbial translocation is a cause of systemic immune activation in chronic HIV infection.

Nat Med. 2006; 12: 1365-1371

View in Article

Scopus (2033) • PubMed • Crossref • Google Scholar

43. Byakwaga H • Kelly M • Purcell DF • et al. • the CORAL Study Group
Intensification of antiretroviral therapy with raltegravir or addition of hyperimmune bovine colostrum in HIV-infected patients with suboptimal CD4+ T-cell response: a randomized controlled trial.

J Infect Dis. 2011; 204: 1532-1540

View in Article

Scopus (44) • PubMed • Crossref • Google Scholar

44. Gori A • Rizzardini G • Van't Land B • et al.
Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “COPA” pilot randomized trial.

Mucosal Immunol. 2011; 4: 554-563

View in Article
46. Zeng M • Smith AJ • Wietgrefe SW • et al.
Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections.
J Clin Invest. 2011; 121: 998-1008

47. Moore RD • Bartlett JG • Gallant JE
Association between use of HMG CoA reductase inhibitors and mortality in HIV-infected patients.
PLoS One. 2011; 6: e21843

48. Ganesan A • Crum-Cianflone N • Higgins J • et al.
High dose atorvastatin decreases cellular markers of immune activation without affecting HIV-1 RNA levels: results of a double-blind randomized placebo controlled clinical trial.
J Infect Dis. 2011; 203: 756-764
50. Abrams D • Lévy Y • Losso MH • et al. • , the INSIGHT-ESPRIT Study Group, the SILCAAT Scientific Committee
Interleukin-2 therapy in patients with HIV infection.

View in Article

Scopus (265) • PubMed • Crossref • Google Scholar

51. Deeks SG • Phillips AN
HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity.
BMJ. 2009; 338: a3172

View in Article

Scopus (360) • PubMed • Crossref • Google Scholar

52. Tate JP • Justice AC • Hughes MD • et al.
An internationally generalizable risk index for mortality after one year of antiretroviral therapy.
AIDS. 2013; 27: 563-572

View in Article

Scopus (73) • PubMed • Crossref • Google Scholar

53. Clegg A • Young J • Iliffe S • Rikkert MO • Rockwood K
Frailty in elderly people.
Lancet. 2013; 381: 752-762

View in Article

Scopus (1369) • PubMed • Summary • Full Text • Full Text PDF • Google Scholar
55. Justice AC
 HIV and aging: time for a new paradigm.

56. Fried LP • Tangen CM • Walston J • et al. • ,
 the Cardiovascular Health Study Collaborative Research Group
 Frailty in older adults: evidence for a phenotype.

57. Fried LP • Xue QL • Cappolla AR • et al.
 Nonlinear multisystem physiological dysregulation associated with frailty in older
 women: implications for etiology and treatment.

58. Barzilay JI • Blaum C • Moore T • et al.
 Insulin resistance and inflammation as precursors of frailty: the Cardiovascular Health
 Study.
 Arch Intern Med. 2007; 167: 635-641

63. Walston J, Hadley EC, Ferrucci L, et al. Research agenda for frailty in older adults: toward a better understanding...
64. Brown TT • Glesby MJ
Management of the metabolic effects of HIV and HIV drugs.
Nat Rev Endocrinol. 2012; 8: 11-21

View in Article
Scopus (37) • Crossref • Google Scholar

65. Leeansyah E • Cameron PU • Solomon A • et al.
Inhibition of telomerase activity by human immunodeficiency virus (HIV) nucleos(t)ide reverse transcriptase inhibitors: a potential factor contributing to HIV-associated accelerated aging.
J Infect Dis. 2013; 207: 1157-1165

View in Article
Scopus (55) • PubMed • Crossref • Google Scholar

66. Payne BA • Wilson IJ • Hateley CA • et al.
Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations.
Nat Genet. 2011; 43: 806-810

View in Article
Scopus (119) • PubMed • Crossref • Google Scholar

67. Appay V • Fastenackels S • Katlama C • et al.
Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients.
AIDS. 2011; 25: 1813-1822
69. Hall HI • Frazier EL • Rhodes P • et al.
Differences in human immunodeficiency virus care and treatment among subpopulations in the United States.
JAMA Intern Med. 2013; 173: 1337-1344

60. Levitt NS • Steyn K • Dave J • Bradshaw D
Chronic noncommunicable diseases and HIV-AIDS on a collision course: relevance for health care delivery, particularly in low-resource settings—insights from South Africa.
Am J Clin Nutr. 2011; 94: 1690S-1696S

71. Maher D • Sneeth L • Sekajugo J
Health transition in Africa: practical policy proposals for primary care.
Bull World Health Organ. 2010; 88: 943-948

72. Mills EJ • Ford N
Political lessons from the global HIV/AIDS response to inform a rapid
73. Rabkin M • Nishtar S
Scaling up chronic care systems: leveraging HIV programs to support noncommunicable disease services.
J Acquir Immune Defic Syndr. 2011; 57: S87-S90

View in Article

Scopus (25) • PubMed • Crossref • Google Scholar

74. Balabanova D • Mills A • Conteh L • et al.
Good health at low cost 25 years on: lessons for the future of health systems strengthening.
Lancet. 2013; 381: 2118-2133

View in Article

Scopus (88) • PubMed • Summary • Full Text • Full Text PDF • Google Scholar

75. Samb B • Desai N • Nishtar S • et al.
Prevention and management of chronic disease: a litmus test for health-systems strengthening in low-income and middle-income countries.
Lancet. 2010; 376: 1785-1797

View in Article

Scopus (188) • PubMed • Summary • Full Text • Full Text PDF • Google Scholar

76. Duncombe C • Ball A • Passarelli C • Hirnschall G
Treatment 2.0: catalyzing the next phase of treatment, care and support.
Curr Opin HIV AIDS. 2013; 8: 4-11

View in Article

Scopus (12) • PubMed • Crossref • Google Scholar
78. Bärnighausen T • Chaiyachati K • Chimbindi N • Peoples A • Haberer J • Newell ML
Interventions to increase antiretroviral adherence in sub-Saharan Africa: a systematic review of evaluation studies.

79. Callaghan M • Ford N • Schneider H
A systematic review of task-shifting for HIV treatment and care in Africa.
Hum Resour Health. 2010; 8: 8

80. Ford N • Mills EJ
Simplified ART delivery models are needed for the next phase of scale up.
PLoS Med. 2011; 8: e1001060

81. Roberts T • Bygrave H • Fajardo E • Ford N
Challenges and opportunities for the implementation of virological testing in resource-limited settings.
83. Bendavid E • Ford N • Mills EJ
HIV and Africa's elderly: the problems and possibilities.
AIDS. 2012; 26: S85-S91

84. Bor J • Herbst AJ • Newell ML • Bärnighausen T
Increases in adult life expectancy in rural South Africa: valuing the scale-up of HIV treatment.
Science. 2013; 339: 961-965

85. Hontelez JA • Lurie MN • Newell ML • et al.
Ageing with HIV in South Africa.
AIDS. 2011; 25: 1665-1667

86. Gupta A • Wood R • Kaplan R • Bekker LG • Lawn SD
Prevalent and incident tuberculosis are independent risk factors for mortality among patients accessing antiretroviral therapy in South Africa.
WHO policy on collaborative TB/HIV activities: guidelines for national programmes and other stakeholders. World Health Organization, Geneva; 2012

View in Article

Google Scholar

88. Geneau R • Hallen G
Toward a systemic research agenda for addressing the joint epidemics of HIV/AIDS and noncommunicable diseases.
AIDS. 2012; 26: S7-S10

View in Article

Scopus (14) • PubMed • Crossref • Google Scholar

89. Rabkin M • Melaku Z • Bruce K • et al.
Strengthening health systems for chronic care: leveraging HIV programs to support diabetes services in Ethiopia and Swaziland.
J Trop Med. 2012; 2012: 137460

View in Article

Scopus (31) • PubMed • Crossref • Google Scholar

90. van Olmen J • Schellevis F • Van Damme W • Kegels G • Rasschaert F

View in Article

Scopus (27) • PubMed • Crossref • Google Scholar

View Article

Scopus (324) PubMed Crossref Google Scholar

View Article

Scopus (800) PubMed Crossref Google Scholar

View Article

Scopus (859) PubMed Crossref Google Scholar

View Article

98. Sáez-Cirión A • Bacchus C • Hocqueloux L • et al. •, the ANRS VISCONTI Study Group
Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study.

99. Archin NM • Liberty AL • Kashuba AD • et al.
Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy.
Nature. 2012; 487: 482-485
The end of AIDS: HIV infection as a chronic disease - The Lancet

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(13)618...