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 SI* (MODERN METRIC) CONVERSION FACTORS 
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Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 
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in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e
(Revised March 2003) 
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GLOSSARY 

Battle Deck: term first used in the United States to describe an orthotropic steel deck. 

Blow-through: excessive, undesirable penetration of the weld application leading to splatter and 
gaps in the weld root and welded surfaces (see melt-through). 

Bulkhead: in orthotropic steel decks, an internal diaphragm placed in closed ribs so as to make a 
continuous connection of the floorbeam web through the rib.  It is intended to dissipate the 
effects of discontinuous shear forces and distortions local to the rib.  Use of the bulkhead detail is 
not recommended except in specific situations where other alternatives to alleviate stresses are 
not possible.  

Constant Amplitude Fatigue Limit: the constant amplitude stress range under which no crack 
growth will occur for a particular fatigue detail.   

Cut-Out: for orthotropic steel decks, the cut out is a stress-relieving cut made in the floorbeam 
(diaphragm) web to alleviate the out-of-plane stresses induced by the longitudinal rotations of 
the rib due to applied loads on the deck and/or to avoid welding to the bottom of the rib where 
longitudinal stresses are highest. 

Crossbeam: alternate name for floorbeam (see Floorbeam). 

Deck Plate: the top plate of an orthotropic deck that supports the wearing surface and directly 
supports the wheel loads.  The deck plate is stiffened by longitudinal ribs and transverse 
floorbeams (diaphragms) on the underside.   

Delamination: a separation of the internal layers of a material, shear is no longer transferred 
though the adjacent layers. 

Diaphragm: for orthotropic steel decks, a diaphragm is a transverse component similar to a 
floorbeam but is typically characterized by not having a bottom flange or being seated atop a 
sub-floorbeam in the primary bridge framing (see Floorbeam).   

Fatigue: the initiation and/or propagation of cracks due to a repeated variation of normal stress 
with a tensile component.  

Fatigue Threshold: see constant amplitude fatigue limit. 

Filled Steel Grid Deck: a deck composed of a tightly spaced steel grid, filled with cementitious 
material to form a riding surface.   

Floorbeam: for orthotropic steel decks, a floorbeam is a transverse component which provides 
support to the ribs and transfers loads to primary girders. Also referred to as a crossbeam, an 
intermediate floorbeam is generally smaller and does not necessarily tie in to a main structural 
member.  
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Girder: a main load carrying member that runs longitudinally with the orthotropic deck ribs and 
the bridge.  In orthotropic decks, girders are composite with the deck plate and other components 
of the orthotropic system. 

Intermediate Floorbeam: see Floorbeam 

Level 1 Design: in orthotropic decks, design verification by little or no structural analysis, but by 
selection of details that are verified to have adequate resistance by experimental testing (new or 
previous). 

Level 2 Design: in orthotropic decks, design verification by simplified one-dimensional or two-
dimensional analysis of certain panel details where such analysis is sufficiently accurate or for 
certain details that are similar to previous tested details as described in Level 1. 

Level 3 Design: in orthotropic decks, design verification by refined three-dimensional analysis 
of the panel to quantify the local stresses to the most accurate extent reasonably expected from a 
qualified design engineer experienced in refined analysis.     

Local Structural Stress: the surface stress at a welded detail including all stress raising effects 
of a structural detail excluding all stress concentrations due to the local weld profile itself.  

Melt-through: in orthotropic deck welding, condition where additional weld material penetrates, 
especially at the back side of the rib to deck weld, and forms additional reinforcing on the 
opposite side of the weld application.   

Orthotropic: derivation of the word comes from two terms.  The system of ribs and floorbeams 
are orthogonal and their elastic properties are different or anisotropic with respect to the deck: 
thus orthogonal-anisotropic becomes orthotropic. 

Orthotropic Steel Deck: A system by which a deck plate is stiffened by longitudinal ribs and 
transverse floorbeams (diaphragms) directly supporting live loads. 

Orthotropic Bridge: A bridge that incorporates orthotropic components (e.g. rib stiffened 
plates) in its construction.  Orthotropic bridges do not necessarily have orthotropic decks; a 
bridge with an orthotropic deck would be considered an orthotropic bridge.   

Redeck (Redecking): The rehabilitation of an existing bridge by removal and replacement of the 
existing deck with a new deck or deck system. 

Refined Analysis: for orthotropic steel decks, evaluation of the local structural stress at fatigue 
prone details by a detailed three-dimensional shell or solid finite element structural model, 
including all plate components and connections.  

Residual Stresses: Stresses that remain in an unloaded member after the initial cause of the 
stress is removed.  The residual stresses of concern for orthotropic bridges are those resulting 
from cold-bending, welding, and fabrication (sometimes referred to as locked-in) stresses. 
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Rib: in orthotropic steel decks, longitudinal members used to stiffen a structural plate that can be 
open (e.g. angle or plate rib) or closed (e.g. U-shape or trapezoidal ribs).   

Rib Span: the span length of a longitudinal rib member between supporting floorbeams.    

Seal Plate: in orthotropic steel decks, a plate placed at the end of closed ribs to seal the rib from 
outside exposure, in particular moisture. 

Stress Concentration: Stress at a structural detail that includes the effects of geometric 
discontinuities and considers the total local stress. 

Tooth: in orthotropic steel decks, zone between rib cut-outs on the floorbeam (diaphragm) web 

Wearing Surface: placed on the deck plate in order to provide a skid resistant surface with good 
ride quality, they also provide corrosion protection to the deck plate, level out deck plate 
irregularities, and last but not the least, potentially contribute to increased fatigue life of the deck 
plate resulting from reduction in stress levels in the steel plate 
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GLOSSARY OF ACRONYMS 

Acronym Definition 

ADTT average daily truck traffic 
CAFL constant amplitude fatigue limit (fatigue threshold)  
CFRP carbon fiber reinforced polymer 
CJP Complete Joint Penetration (weld) 
CNC computer numerically controlled 
FCAW Flux Core Arc Weld 
FCM Fracture Critical Member 
FB Floorbeam 
FEA Finite Element Analysis 
GMAW Gas Metal Arc Weld 
GVW Gross Vehicle Weight 
LRFD Load and Resistance Factor Design 
LRFR Load and Resistance Factor Rating 
LSS Local Structural Stress 
MT Magnetic Particle Testing 
MPF Multiple Presence Factor 
MTR Mill Test Report 
NDE Non-Destructive Evaluation 
NDT Non-Destructive Testing 
NRL Notional Rating Load 
OSD Orthotropic Steel Deck 
PJP Partial Joint Penetration (weld) 
PQR Procedure Qualified Record 
RD Rib-to-Deck Plate 
RF Rib-to-Floorbeam (intermediate Floorbeam, or Diaphragm) 
RDF Rib-to-Deck at the Floorbeam 
RT Radiographic Testing 
SAW Submerged Arc Weld 
SCF Stress concentration factor 
SHV Specialized Hauling Vehicle 
SMAW Shielded Metal Arc Weld 
TL Test Level (AASHTO testing criteria for barriers) 
UT Ultrasonic Testing 
WPR Welding Procedure Records 
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LIST OF SYMBOLS 

Symbol Definition 

a rib width at deck 
a+e center-to-center rib spacing 
A  cross-sectional area  
Aeff  summation of the effective areas of the cross-section based on the reduced  

effective widths  
Ar  area enclosed by the closed rib;  
b rib width at base of rib 
be   reduced effective width of the plate 
bod  effective width of Orthotropic Deck, 
B  spacing between Orthotropic Deck girder web plates or transverse floorbeams, 
B1  is an amplification factor to account for additional moment caused by lateral 

displacements in the panel (P-δ), 
C fatigue detail constant 
Cm  the equivalent moment factor  
Cr Capacity (load rating) 
d depth of cross member (e.g. floorbeam or diaphragm) 
Dx  plate flexural rigidity in the x-direction 
Dy  plate flexural rigidity in the y-direction 
DC Dead load effect due to structural components and utilities 
DW Dead load effect due to wearing surface and utilities 
∆f force effect of variable amplitude loads 
e clear space between ribs at deck 
E modulus of elasticity  
f  applied stress 
Fe   is the elastic critical buckling stress = 22 )//( rKLEπ  
Fy yield stress of steel 
φR factored resistance (LRFD) 
γi appropriate load factor (LRFD) 
h height of rib 
h’ length of rib along leg  
hcutout height of the rib cut-out 
H effective torsional rigidity of a plate 
IM impact factor 
ϕ LRFD resistance factor 
ϕc LRFR system factor 
ϕs LRFR condition factor 
K is the effective length factor 
Ks  stress concentration factor 
L span length of the Orthotropic Deck girder or Floorbeam 
LL  live load effect 
m  inverse of slope on the sloping portion of the fatigue S-N curve 
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LIST OF SYMBOLS (CONTINUED) 

M bending moment 
n cycles per truck passage 
N number of fatigue cycles 
p(x,y)  the loading at any point on a plate with coordinates of (x, y) 
P  Permanent load other than dead load (load rating) 
Q  is the slender element local buckling reduction factor 
Qi force effect (LRFD) 
r is the radius of gyration of the strut 
RF Rating Factor 
S splice spacing 
Sr fatigue stress range 
σ stress 
σ1 stress at first midpoint node location for extrapolation 
σ2 stress at second midpoint node location for extrapolation 
σr stress range 
σhs stress including concentrations 
σlss local structural stress 
t plate thickness  
tc floorbeam web thickness 
td steel deck thickness 
tr rib thickness 
u  entire length of the closed rib plate;  
v Poisson’s Ratio for steel (v = 0.3) 
w  deflection of the middle surface of a plate 
ψ  effective width ratio of a box girder flange 
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FOREWORD 

The Manual for Design, Construction, and Maintenance of Orthotropic Steel Deck Bridges has 
been developed to supplement and modernize the 1963 Design Manual for Orthotropic Steel 
Plate Deck Bridges written by Roman Wolchuk and published by the American Institute of Steel 
Construction.  Thousands of orthotropic deck bridges have been built around the world.  The 
generous sharing of lessons learned from the performance by the bridge owners, further research 
in improving the serviceability, and fatigue performance, and the improvement in design, quality 
of fabrication and inspection, and maintenance of orthotropic bridge decks, have the  potential to 
be one of the most desirable choice by bridge engineers.  Good performance has been 
demonstrated in the laboratory and experienced in the field.  

Orthotropic steel decks provide a modular, prefabricated design solution that has proven 
effective in new construction where speed and extended service life are desired, and in 
rehabilitation of existing bridges where weight is of primary concern. Orthotropic steel decks 
have other advantages, such as, low maintenance, suitability for standardization and 
prefabrication, support of accelerated bridge construction, reduced disruption to traffic during 
construction, improved work zone safety, and low life-cycle cost.  With his extensive research 
and field experience, Dr. John Fisher of Lehigh University has expressed in many occasions that 
an orthotropic bridge deck system is most able to provide a 100-year service life. 

This Manual, including the new AASHTO LRFD specifications, is the culmination of over four 
years of diligent effort by FHWA and the HDR Team in working together with the AASHTO 
Technical Committee T-14 Steel Bridges on a continual basis.  The latest research and practice 
have been synthesized and numerous experts and practitioners, both domestic and international, 
have been consulted to develop the current state-of-the-knowledge criteria and guidance that will 
promote cost-effective and durable performance.   

The feedback received from participants of FHWA organized workshops on the development of 
the manual, and the constructive review comments on the final draft of the manual from many 
engineering professionals are very much appreciated.  The readers are encouraged to submit 
comments for future enhancements of the manual to Myint Lwin at the following address:  
Federal Highway Administration, 1200 New Jersey Avenue, S.E., Washington, DC 20590. 

 
 

 
M. Myint Lwin, Director 
Office of Bridge Technology 
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1. INTRODUCTION  

1.1. INTRODUCTION TO ORTHOTROPIC STEEL DECK BRIDGES 

Many of the world’s most magnificent modern bridge structures utilize the orthotropic steel plate 
systems as one of the basic structural building blocks for distribution of traffic loads in decks and 
for the stiffening of slender plate elements in compression. Examples include the new San 
Francisco Oakland Bay Bridge, Self Anchored Suspension Span in California and the proposed 
Strait of Messina Bridge in Italy.  Stiffened steel plates have been used for many years in a wide 
range of steel construction applications.  They are particularly prevalent in the ship building 
industry and for hydraulic applications such as tanks, gates, and locks.  The first orthotropic steel 
deck (OSD) bridge was developed by German engineers in the 1930's and the first such deck was 
constructed in 1936. In the United States, a similar system was built and often referred to as a 
“battle deck” because it was considered to be as strong as a battleship.    

Generally, the OSD system consists of a flat, thin steel plate, stiffened by a series of closely 
spaced longitudinal ribs with support by orthogonal transverse floorbeams (Figure 1-1).  The 
deck has considerably different stiffness characteristics in the longitudinal and transverse 
direction.  Hence, the deck is considered to be structurally anisotropic.  The name “orthotropic” 
arises out of a shortened form of the technical structural description of the system.  According to 
Orthotropic Bridges – Theory and Design (Troitsky, 1987), “Because [the] ribs and floorbeams 
are orthogonal and because in both directions their elastic properties are different or anisotropic, 
the whole system became known as orthogonal-anisotropic, or, briefly, orthotropic.”  German 
engineers are credited with creating the word “orthotropic” and a patent was registered in 1948 
(Sadlacek, 1987).   

The OSD is efficient in that it is integral with the supporting bridge superstructure framing as a 
top flange common to both the transverse floorbeams (FBs) and longitudinal girders. This results 
in increased rigidity and material savings in the design of these components. As with other 
conventional steel-framed construction, loads are generally transferred by FBs transversely to the 
main load carrying system, such as longitudinal girders. Although, transverse members in the 
deck are most often referred to as floorbeams, there are also other commonly used terms such as 
crossbeam and/or diaphragm. Diaphragm is most appropriate when the deck is used in a 
redecking application and the member is rigidly, continuously attached to the existing bridge 
framing. Intermediate floorbeam may also be used where the FB member is not supported at its 
ends by main members and it is only serving to provide load distribution in the deck. The 
defining characteristic of the OSD bridge is that it results in a nearly all steel superstructure 
which has the potential (with minimal maintenance) to provide extended service life and 
standardized modular design, as compared to more conventional bridge construction. 
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Figure 1-1 Components of the Orthotropic Steel Deck Bridge Girder System showing (a) 
Open Ribs and (b) Closed Ribs (AISC, 1963. Copyright American Institute of Steel 

Construction Reprinted with permission. All rights reserved.) 

The OSD system has been utilized successfully for thousands of bridges worldwide, particularly 
in Europe, Asia, and South America. The United States has not yet fully embraced this 
technology, with only an estimated 100 such bridges in its inventory. The OSD bridge has been 
most commonly used in the United States for particular design conditions.  One condition is for 
long span structures where the minimization of dead load is paramount, such as the new Tacoma 
Narrows Bridge.  A second example is for box girders which contain slender compressive plate 
elements requiring stiffening, such as the Alfred Zampa Memorial Bridge (see Figure 1-2) A 
third example is for redecking of existing major bridges on urban arterials where rapid 
construction is needed, such as the Bronx-Whitestone Bridge.  

OSD construction also has tremendous potential for use in short to medium span “workhorse” 
girder bridges when located on a high-volume roadway where accelerated construction or 
extended service life is required.  There is a recent trend in the United States towards using 
bridge systems that are more rapidly constructible to minimize impacts to the traveling public, 
and to solutions that offer more long term durability and economy with the goal of 100 years of 
service life (Mistry and Mangus, 2006). The OSD bridge can provide an economical solution to 
meet these criteria.  Furthermore, OSD is able to be constructed quickly because most of the 
components are prefabricated. Additionally, complete future redecking is rendered unnecessary, 
which minimizes any major traffic impacts in the future.  Furthermore, the OSD provides a 
smooth continuous riding surface durable against deicing salts with minimal joints to prevent 
leakage and protect the other bridge components. 
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Figure 1-2 Erection of Orthotropic Box Girder Segment for the Alfred Zampa Memorial 
Bridge lifting a Deck Segment into Place 

It is recognized that OSD bridges have not been problem-free historically. They present unique 
challenges in terms of design and construction as compared to conventional bridge construction. 
Fatigue cracking has been observed more frequently in such decks resulting from the 
complicated welded details combined with stresses that can be more difficult to quantify and, in 
particular, early designs which attempted to overly minimize plate thicknesses to reduce weight.  
In addition, the designs of critical details are not controlled by dead load or ultimate strength, but 
rather, live load (from individual wheels, in some cases).  In any element where cyclic live load 
stress ranges dominate the design, fatigue will be the controlling limit state.   

Early analytical tools were limited in their ability to quantify the stress states at these details and 
the early experimental fatigue resistance database was limited.  Moreover, the fatigue 
performance of many of these details can be sensitive to fabrication techniques. Design and 
detailing practices relied heavily on experience gained through trial and error. Unfortunately, 
many trials were unsuccessful, creating questions among owners as to their long-term 
effectiveness in United States highway infrastructure. It is unfortunate that many of the reports of 
cracking have occurred in redecking projects where the interactions between new OSD and 
existing structure are difficult to account for, and design optimization is not easily achievable if 
at all possible. 

The potential for cracking at the rib-to-deck plate (RD) weld is indicative of this problem. 
Whereas this one-sided weld was once a source of performance issues, it is now executed with a 
vast increase in consistency and performance by using a partial joint penetration (PJP) with 
controlled penetration, and with no melt thru allowed. Cracking is also possible at the rib-to-
floorbeam (RF) intersections, where 3-dimensional stresses are generated by the in-plane flexure 
of the FB response combined with the out-of-plane twisting from the rib rotations. All of these 
details have been the subject of extensive research efforts over recent decades, providing better 
understanding of performance and proper design.  For example, a stress-relieving cut-out in the 
FB around the rib (Figure 1-3) has performed well when the geometry is appropriately designed.  
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One clear advantage to the OSD is that it is a highly redundant system and minor cracking is 
often more of a nuisance to be observed and documented rather than a serious threat to the 
strength or integrity of the structure. 

 

Figure 1-3 Orthotropic Deck Rib-to-Floorbeam (RF) Connection showing the Stress 
Relieving Cut-out Detail 

Wearing surfaces applied to OSDs have also exhibited performance problems in the past with 
cracking, rutting, shoving, and/or delamination, which has often resulted in early maintenance 
and resurfacing. These problems have generally been attributed to inadequate construction 
control, environmental related degradation of the materials, or flexible design of the steel 
decking. This is also a symptom of the previous lack of experience. Recent research and 
development and general design improvements, such as minimum deck plate thickness of 14 mm 
to 16 mm (9/16 inch to 5/8 inch) have addressed the causes of many of these previous failures. 
Additionally, current design concepts have proven successful in many modern OSD bridges in 
the United States and abroad.   

There are two broad categories of surfacing materials currently being used: (a) bituminous 
surfacing systems including mastic asphalts, latexmodified asphalts, and reinforced asphalt 
systems; (b) polymer surfacing systems, including epoxy resins, methacrylates and 
polyurethanes. Although not mandatory, many bituminous surfacing materials used on steel 
orthotropic deck bridges are 50 mm (2 inches) or greater in thickness, while most polymer 
surfacing materials are 20 mm (3/4 inch) or less in thickness. The climate generally dictates 
which type of surface is to be selected since bituminous surfaces are more sensitive to changes in 
temperature. Both wearing surface types have demonstrated a service life in excess of 30 years. 
As with all manner of bridges, no matter what type of wearing surface is utilized, regular 
maintenance and occasional resurfacing will be required during the design life of the deck.   

The corrosion resistance of OSDs has historically been very good. The top side is protected by 
the wearing surface, and the bottom side can be protected with a conventional paint system. 
Similar to other steel bridge structures, it may require regular maintenance in terms of repainting. 
Moreover, OSDs are typically made continuous, without joints, for extended lengths, which 
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minimizes potential locations for water penetration. Thus, the coating on the underside of the 
deck can last for a long period unless it is subjected to direct saltwater spray. The individual ribs 
are typically sealed with end plates that prevent moisture from entering the interior of the rib. 
Outside the United States, a common approach has been to use a fully closed box girder cross-
section and employ an in-service dehumidification system on the interior to essentially eliminate 
the possibility of corrosion, and thus there is no need for an interior paint system.  

One of the primary reasons for advancement of OSD bridges in the United States is the 
application of modern techniques for engineering analysis and design. Orthotropic behavior is 
advanced since the plate distributes lateral loads in two directions and involves integral behavior 
of the deck with the FBs and girders. Engineers in the United States are generally unfamiliar 
with these types of structures and existing published manuals, such as (AISC, 1963) and 
(Troitsky, 1987), although state-of-the-art at the time of their copyright, have become dated. 
Additionally, early simplified analysis methods do not provide for a complete engineered design. 
This Manual aims to gather and disseminate the modern OSD technology based on worldwide 
practice. Emphasis is now placed on the fact that the design of these structures is generally 
controlled by fatigue limit states. Details necessary to make these structures work require 
advanced fatigue evaluation techniques that must rest on accurate stress range calculations, 
which is possible with the use of the Finite Element Analysis (FEA) and/or prototype testing. 
The fatigue testing database has grown considerably over the last few decades, which has 
provided the necessary data for proper evaluation and detailing for fatigue resistance.  

Of equal importance to the engineering design are the means, methods, and quality control of the 
fabrication and construction. History has demonstrated that refined analysis and design can be 
rendered meaningless when the construction is not executed properly. Orthotropic details are 
also advanced in terms of fabrication and must be treated with care. To be successful, they 
require detailed construction specifications and quality control measures in production. As 
fabricators in the United States gain more experience in these projects, they will be viewed with 
less risk, which will promote more bid participation and lower cost. One factor that has 
exacerbated the risk for fabricators is the unwillingness of engineers to modify construction 
specifications to reduce risk and increase economy.  This has generally been due to lack of data. 
This Manual provides the necessary information to solve this problem.   

General consensus is that for OSD bridges to become cost effective in the United States, 
standardization is critical. Standard panel details will promote repetition, economy in design, 
and fabrication as well as improve quality of the finished product. Standards would also limit the 
need to conduct refined engineering analysis or prototype testing for every new project. 
However, optimum standard designs cannot yet be definitively established until more laboratory 
testing is conducted and domestically produced systems prove successful in service. This Manual 
promotes sound detailing concepts based on the current available knowledge, yet leaves room for 
advancements as more data becomes available and engineers discover improvements to existing 
designs. It is conceivable that after a period of development (which may last one or two decades) 
the application of OSD bridge decks will become second nature and standard designs will be 
available without the need to perform refined analytical procedures or laboratory testing. This 
Manual is seen as an initial step to achieve this ultimate goal. 
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OSDs can compete in cost with other suitable deck alternatives, such as the conventional cast-in-
place concrete deck and concrete filled grids, when life cycle cost is considered. Because of their 
higher initial costs, OSDs must necessarily have lower maintenance needs and longer lives in 
order to be justified. Laboratory studies have demonstrated that an OSD with a 100-year design 
life may be achievable.  Additionally, existing bridges like the Golden Gate Bridge and Fremont 
Bridge have shown that they are capable of performing with minimal required maintenance. 
With proper design and detailing, well executed fabrication, and quality construction, the full 
potential of OSD bridges can be exploited throughout the United States. 

The target audience for this Manual includes engineers, owners, contractors, fabricators, and 
researchers in the bridge industry. The Manual gathers and summarizes worldwide knowledge 
from countries such as Germany, Denmark, France, Russia, Brazil, China, and Japan, and put it 
into context with United States design and construction practice. The project types covered in 
this Manual are long-span bridges, such as cable-stayed and box girder systems, bridge 
redecking, and decks for the more common “workhorse” girder bridge. It is the last case for 
which OSDs have not been used frequently in the United States, but with the potential for large 
volume and standardization of design, the Manual attempts to promote consideration in such 
cases. 

1.2. ORGANIZATION OF THE MANUAL 

This Manual covers the relevant issues related to OSD bridge engineering, including analysis, 
design, detailing, fabrication, testing, inspection, evaluation, and repair. Chapter 2 begins with 
discussion of some the various applications of OSD bridge construction to provide background 
with case study examples. Chapter 3 provides basic criteria for the establishment of a cost-
effective and serviceable OSD bridge cross-section with detailing geometry that has been used 
on recent projects worldwide. Chapter 4 provides the relevant information necessary for the 
engineering analysis of the OSD bridge, including fundamental behavior and application of 
refined techniques. Chapter 5 outlines the requirements for complete design of OSD bridge 
superstructures by evaluation of applicable limit states using the Load and Resistance Factor 
Design (LRFD) methodology. Chapter 6 addresses design details such as materials, corrosion 
protection, minimum proportions, and connection geometry. Chapter 7 provides basic 
fabrication, welding, and erection procedures for OSD bridge components, illustrated by photos 
of shop and field practices. Chapter 8 provides recommended methods for maintaining and 
evaluating OSD bridges, including inspection, load rating by LRFR, rehabilitation strategies, and 
fatigue retrofit. Chapter 9 addresses all issues related to wearing surfaces. Chapter 10 covers 
testing of OSDs. The culmination of all the information provided is demonstrated in the design 
examples of Chapter 11 which contains one multi-girder bridge example and one cable-stayed 
bridge example demonstrating engineering design of OSD bridges by refined analytical 
techniques. 
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2.  BRIDGE APPLICATIONS 

2.1. GENERAL BACKGROUND 

There appears to be a general lack of experience with orthotropic steel deck (OSD) bridges in the 
United States with the exception of a few major projects. As such, some time should be devoted 
to study of previous applications. Success in bridge design has proven to rely on experience and 
applying lessons learned from past projects. The historical lessons have allowed engineers and 
researchers to continually make improvements to OSD systems for decades, and since much of 
the worldwide experience with OSDs lies outside the United States, it is equally important to 
look internationally to gather the fullest range of examples.  

This chapter is intended to highlight a few of the notable successful projects worldwide and let 
the readers follow through to discover more details. Projects from the Americas, Europe, Middle 
East, and Asia are discussed herein. Good summaries of OSD bridge projects can be found in the 
references by Troitsky (1985), Huang et al (2008), Hoorpah (2004), Korniyiv (2004), and Choi 
et. al. (2008). Although each governing body around the world has adopted subtle differences in 
terms of design and detailing practice, there is relative consistency as the collective knowledge 
has been shared in an unprecedented way.  

The greatest advantage of OSD construction is realized when it is used in long-span bridges 
because it is comparatively lightweight, and it can work in composite action with the main 
longitudinal members. OSDs are also excellent candidates for bridges in seismic zones where 
they can reduce seismic inertia forces on piers and foundations and are able to undergo ductile 
deformations without sudden failures. OSDs are also highly desirable in movable bridges where 
they provide enduring performance with greater ease of movement. Additionally, their ability to 
perform structurally in a raised position better than other decks renders them superior. ODSs 
have been used in railway bridges, where the least maintenance, most durable solution is desired. 
While they are not effective at resisting direct train loads (especially where heavy locomotives 
are involved) they can perform well when ballasted for load distribution. In fact, many of the 
fatigue concerns discussed throughout this manual can be reduced or eliminated when ballast is 
utilized. In summary, OSD design can provide cost-effective solution in the following 
conditions: 

• Long-span bridges 
• Movable bridges 
• Bridges in seismic zones 
• Bridges where rapid construction is required 
• Bridges where extended service life is required 
• Cold weather conditions where cast-in-place concrete is difficult 

Since many of the existing applications of orthotropic construction are long-span, signature 
bridges, they are all very special designs in terms of the bridge cross-section and superstructure 
configuration. The designs are often controlled by particular design criteria, constructability, or 
other considerations that in retrospect may not be obvious to the outside investigator. Prudence 
must be exercised when attempting to reuse any design detail that was used in a past project. For 
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instance, internal rib bulkheads have been used on recent bridge redecking projects to control 
certain secondary stresses due to unique interactions with the existing superstructure. Thus, it 
should not be assumed to be the ideal solution for new construction (see Chapter 4 for more on 
this subject).  

In the following sections, a number of notable orthotropic bridge projects are discussed based on 
the general categories: Plate Girder Bridges, Box Girder Bridges, Suspended Span Bridges, 
Bridge Redecking, and Movable Bridges. Although there are many different bridge types that 
utilize orthotropic construction, it is emphasized that basic design of the OSD is quite similar in 
all cases. The commentaries provided are not intended to make judgments on previous designs 
based on present knowledge. They are instead intended to be discussions of typical examples of 
bridge types, and what they achieved at the time of their construction. 

2.2. PLATE GIRDER BRIDGES 

OSD bridges of this type were originally built in the 1930s under the name “battledeck floor” 
structures. A deck plate was welded to the tops of longitudinal I, T, or WF sections.  The sections 
acted as ribs and were spaced up to 0.838 m (33 inches) on center, depending on the deck plate 
thickness. Transverse delivery of floor loads to the main girders was provided by floorbeams. 
Local load distribution, if deemed necessary in addition to that of the deck plate itself, was often 
provided by additional transverse plate stiffening welded to ribs and deck plate. Remnants of this 
type of construction still exist in prototypes such as the North Saginaw Road Bridge in Michigan 
(1920). Similar examples were produced in Germany with bent plate flanges over the Autobahn.  

OSDs were used in the early 1950s for longer span plate girder bridges. Ribs always run 
longitudinally with transverse framing acting to distribute loads to several longitudinal girders 
and as support for the deck plate. Examples of these are the Kurpfalz Bridge in Mannheim and 
the Eddersheim Bridge Germany of 1950 and 1953, respectively. 

The year 1956 saw a major achievement in the construction of this bridge type with a three-span 
continuous structure in Belgrade (the Save River Bridge). Two variable depth girders spanning 
75 - 261- 75 m (246 - 856 - 246 ft) over two interior piers, supported a deck with flat plate ribs. 
The 25 mm by 267 mm (1 inch by 10.5 inch) ribs spanned continuously between FBs spaced at 
1.585 m (5.2 ft) centers. The roadway width of this bridge was 11.98 m (39.3 ft).  

The Golden Horn Bridge, erected in 1974 in Istanbul, consists of eight continuous spans of two 
plate girders, for a total of 819.3 m (2688 ft) and with the major span of 132.9 m (436 ft). The 
24.7 m (81 ft) wide roadway deck is supported by an OSD consisting of closed ribs, 0.222 m 
(83/4 inches) deep, spaced at 0.622 m (24.5 inches) on center and spanning 4.50 m (14.75 ft) to 
FBs. Two plate girders, spaced at 24 m (78.75 ft), support the entire structure. Pedestrian 
walkways cantilever outboard of the plate girders. 

In the United States, the use of OSDs did not take hold as it did in Europe. Instead, urban 
congestion demanded better use of space with smoother roadway alignment at bridge approaches 
and crossings. Curved bridges, which seemed to better meet this need and were built with the use 
of composite concrete decks on steel plate girders, would require complex details such as rib 
kinks to make OSD work. Three examples of orthotropic plate girder bridges used in the United 
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States are the Crietz Road over I-496 Bridge in Lansing, MI, (1969), BART Bridge No. A-096 in 
Berkeley, CA, (1972), and the 680-580 Test Bridge in Dublin, CA, (1965). The 680-580 Bridge 
was built as an experimental bridge to verify the performance of two deck sections with different 
steel details and wearing surfaces (Figure 2-1). The bridge is still in service to-date, but the 
wearing surface has been replaced on the thin section. 

 

Figure 2-1 Detail Cross Section Drawing and Photo of the 680-580 Bridge in Dublin, CA 
under Construction 

In general, multi-girder bridges are selected in short to medium span applications because of 
their redundancy and for the ease of staging future resurfacing. Use of OSD in a plate girder 
bridge eliminates the need for complete redecking in the future since the deck is designed to last 
as long as the superstructure. This allows for the use of wide girder spacing, and even a two 
girder cross-section (if the fracture critical concerns can be addressed by increased material 
toughness and/or testing). Thus, the overall cost of such bridges can be competitive, even though 
the deck may be more expensive than comparable cast in place concrete. These types of bridges 
also have good potential for use in urban applications requiring rapid construction or extended 
service life. This bridge type is the subject of Design Example 1 in Chapter 11. 

2.3. BOX GIRDER BRIDGES 

It is often useful and necessary to provide bottom lateral bracing systems for plate girder designs, 
to create a tube-shape cross-section that provides torsional closure. In this manner deflections on 
one side of the road subjected to asymmetrical loads are reduced. Lateral systems are often 
needed to reduce wind effects on bottom flanges of outer girders. The box girder is typically 
found to provide a less complicated and more elegant solution to address these problems.  

Often, two box girders are connected by FBs on the inboard side and cantilever FBs on the 
outboard. This is done to extend the width of the roadway and to balance the load in the boxes. 
An example is the Dusseldorf-Neuss Bridge (1951). The box widths are 7.315m by 0.152 m (24 
ft by 6 inches). The Luxemburg Bridge spanning the Alzette River Valley in Luxemburg and the 
Saint-Christopher Bridge in Lorient, France, are other examples of early double box spans.  

The center FBs joining the two boxes of the Dusseldorf-Neuss serve as supports for stringers 
carrying street car tracks. Stringer beams were used instead of an orthotropic deck to carry 
trolley tracks. 
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The Concordia Bridge, built in 1965 in Montreal, Canada, is an example of a single box with 
three internal cells. That is, the two exterior boxes were closed off in the middle with a 
continuous bottom plate. This bridge, a major achievement, is 690.4 m (2,265 ft) long between 
abutments and four internal piers. The roadway is 25 m (82 ft) wide, and the three cell box is 
17.4 m (57 ft) wide at the bottom. 

The Weser Bridge (1954) and the Speyer Bridge (1957), both in Germany, were early examples 
of single box cross-sections. The Speyer Bridge boxes are 7.99 m (26.2 ft) wide, and those of the 
Weser 5.91 m (19.4 ft) 4 wide. The Weser and the Speyer are single boxes with cantilever arms, 
but the roadway is contained primarily over the box.  

Additional early examples of self-supporting single box girders are the Europa Bridge near 
Innsbruck, Austria (1963), and the Coronado Bridge in San Diego, CA, (1969). 

The Poplar Street Bridge in St. Louis, MI, (1967), the San Mateo-Hayward Bridge in the lower 
San Francisco Bay (1967), the Rio de Janeiro-Niterio Bridge in Brazil (1974), and the Yukon 
River Bridge in Fairbanks, AK, (1975) are examples of double boxes built on the new continent. 
These major structures span a total of 355 m (1,165 ft), 1689.2 m (5,542 ft), 847.9 m (2,782 ft), 
and 701 m (2,300 ft), respectively. 

The San Mateo-Hayward Bridge is a prime example of a successful application of OSD 
construction in a continuous box girder (Figure 2-2). The bridge carries six lanes of heavy traffic 
across San Francisco Bay and the original epoxy asphalt wearing surface is still performing well 
after 45 years of service. 

  
 

Figure 2-2 Rendering of the San Mateo-Hayward Bridge showing the Variable Depth Box 
Girders and Orthotropic Steel Deck 

OSD construction is found most often in box girder sections due to the requirement to stiffen 
wide, slender plate components. Steel box girder cross-sections with an OSD result in a very 
light superstructure, often allowing for preassembly and launching or float-in construction of 
large sections. Box girders also provide the benefit of facilitating routine inspection and 
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maintenance from within and providing protection of the orthotropic components. The box 
below the deck level essentially acts as an inspection walkway that can be accessed without 
disruption to traffic. 

2.4. SUSPENDED SPAN BRIDGES 

The lightness of orthotropic bridge cross-sections makes them excellent candidates for use in 
suspended spans for minimizing dead load in the global superstructure system. This includes 
cable-stayed, suspension, and arch bridges. Cross-sections that have been used include plate 
girder, multi-cell box girder, single cell box girder, and many combinations of stiffening trusses 
and FBs.  

Cable-stayed bridges first emerged with the use of OSDs for relatively short spans, by today’s 
standards. Erected in 1957, the Dusseldorf-North Bridge spanned 260 m (853 ft) between towers 
and 475.8 m (1,561 ft) between end piers. Box girders were used to anchor the stays and support 
the deck. In 1959 the Severin Bridge in Cologne, Germany achieved a 452.3 m (1,484 ft) span 
between piers using a single tower and asymmetrical spans of 301.8 and 150.6 m (990 and 494 
ft). Two continuous box girders were used to anchor the stays.  

The Viaduc de Millau Bridge was completed in Millau, France in 2004 (2,460 m [8071 ft] long 
and 32 m [105 ft] wide). It is a world record holder for suspended spans and is also the highest 
from grade. The bridge crosses the entire River Tam valley. This was achieved with the use of 
seven cable staying towers, supporting an aerodynamic three-cell box girder, which is 91 ft wide.  

OSDs are particularly advantageous for cable-stayed bridges for their large compressive strength 
and for the elimination of the need to accommodate future redecking, which is typically a 
controlling design criterion for a composite deck system with post-tensioned concrete deck.  

Over the last 20 years, many cable-stayed and main-cable suspension bridges have been erected 
with OSDs as part of the superstructure. In the 1960s, suspension bridge decks were still most 
commonly composed of concrete filled steel grids. But, by the 1980’s designers of suspension 
bridges began to shift to OSDs. The reason was lightness and the need to span even greater 
lengths. The list of OSDs used in main cable suspension bridges grows yearly worldwide. They 
are too numerous to mention here. In the United States alone, the Alfred Zampa Memorial 
Bridge was erected with a suspended box girder in the North San Francisco Bay Area in 2004; in 
April 2007, the New Tacoma Narrows Bridge was built with an OSD supported on a stiffening 
truss system. The suspended spans of the new San Francisco-Oakland Bay Bridge are being 
erected, with the likelihood that the bridge will be completed in 2012. It is composed of two 
near-record large box girders that serve to anchor the main cables. 

In Asia, suspension bridge construction is proceeding at an astounding pace. OSDs are the option 
of choice. The current main span world record holder (with 1993m [6538 ft] between towers), 
the Akashi-Kaikyo Bridge, in Japan, was erected in 1998. It is composed of a suspended truss 
with a jointed OSD (with expansion joints). The Tsing Ma Bridge in Hong Kong is presently the 
7th longest span (1,377 m [4,517 ft]). Opened in April 1997, it carries two three-lane roadways 
on top of a hybrid open box girder tube, with two railways inside the box.  
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Europe also has its prototypes. The Forth Roadway Bridge (1964), Severn Bridge (1966), and 
Humber Bridges (1981) in the United Kingdom are prominent examples, as is the more recent 
Storebaelt Bridge in Denmark (1998). All were built with OSDs. It is clear that the defining 
features of these very long span structures are a cable system, the lightness of OSDs used to 
support the roadway, and the steel-suspended structures. 

A prime example of a successful application of orthotropic construction in a suspended-span 
bridge is the Fremont Bridge over the Willamette River in Portland, OR, which opened in 1973 
(see Figure 2-3). This bridge has proven to be a trouble-free design under continuous heavy 
interstate traffic in an urban setting (Abrahams and Hirota, 2004). The original epoxy asphalt 
wearing surface performed well, but did require replacement after approximately 20 years due to 
normal wear. Recent inspection revealed that of the 155,000 square ft of OSD area, there is 
essentially no visible fatigue damage (HDR 2008). 

 

Figure 2-3 Photo of the Fremont Bridge over the Willamette River in Portland, OR. The 
Upper Deck is an Orthotropic Steel Deck for the Full Length of the Main Span Unit.   

2.5. BRIDGE REDECKING 

OSDs have been introduced in the United States as an option to replace aging concrete filled 
steel grid or reinforced concrete decks on suspension bridges. The George Washington Bridge 
(New York, 1977), Benjamin Franklin (Philadelphia, 1984), and Golden Gate Bridge (San 
Francisco, 1986), are early examples of deck replacements for suspension bridges. As of today, 
orthotropic deck replacements are on the drawing board for the Throgs Neck and Verrazano 
Narrows Bridges, in New York; both suspension bridges.  

OSDs have also been used to replace reinforced concrete decks on approach viaducts of major 
bridges, such as the Throgs Neck Bridge and the Triborough Bridge. There is a great potential 
for development of this bridge type, especially in urban areas where traffic congestion during 
repairs is best handled by the faster construction permitted by OSDs. 

Internationally, there have been many examples of successful application of redecking bridges 
with OSDs. The reference by Huang and Mangus (2008) provides a comprehensive list of 
relevant projects. One notable example is the Lions Gate Bridge in Canada, for which the 
approach viaduct was first redecked with OSD in 1975, and then the main span unit was 
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subsequently redecked in 2002 (see Figure 2-4). In both projects, prefabricated deck units were 
installed quickly during nighttime bridge closures. The design employs the cost effective 
solution of using U-shaped ribs without expensive cut-outs in the FB intersections.  The wearing 
surface on the viaduct deck has also proven successful, exceeding the predicted design life 
(Buckland, 2004). 

 

Figure 2-4 Aerial Photo of the Lions Gate Bridge showing the Redecking with Orthotropic 
Deck Segments being Lifted into Place 

2.6. MOVABLE BRIDGES 

As orthotropic deck technology advanced, it became clear that OSDs are ideally suited for 
movable bridge construction for two main reasons.  First, they are light and require less power 
from prime movers to lift and lower the leaf(s); similarly they require smaller ballast 
counterweights.  Second, they deliver the entire floor load (when the bridge is lifted) to the 
girders directly through the deck plate with much less difficulty than their counterparts, the open 
grid and concrete filled grid decks. The internal forces in the trunnions are also reduced. OSDs 
have been used successfully in many different types of movable bridges, such as lift bridges, 
bascule, articulating ramps, floating bridges, and swing spans. A comprehensive review of 
projects can be found in the work by Mangus (2001).  

There are approximately 140 major bascule bridges worldwide, including 48 in the United 
States, 21 in Holland, and nine in the United Kingdom. Europe has approximately 50 bascule 
bridges designed with OSDs, all of them built in the last 20 years. The most notable are the 
Erasmus Bridge in Rotterdam, Netherlands, and the Gateway to Europe in Cadiz, Spain. In the 
United States, some decks on existing bascule bridges have been replaced with OSDs. The trend 
is expected to continue. 
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3.  TYPICAL BRIDGE SECTIONS 

This chapter provides basic criteria for the establishment of a cost effective and serviceable 
orthotropic steel deck (OSD) bridge cross-section, which includes both the overall cross-section 
(global) and the panel section details (local). Criteria for the detailed layout of the panel 
geometry, such as rib and floorbeam (FB) proportions, spacing, and span, are discussed. The 
criteria in this chapter are provided for preliminary design layout.   

The orthotropic panel should be considered a structural component “module” that can be 
assembled into a bridge cross-section in any number of geometries that the designer may 
conceive. In fact, orthotropic panel construction allows the designer to consider sections that are 
not possible otherwise, such as wide, single cell box girder sections.  Figure 3-1 shows an 
example of such as section, with modular panels making the enclosure. The possibilities are quite 
broad depending on the ingenuity of the designer. However, the recommended details of the 
modular panel itself are somewhat established based on the cumulative worldwide experience 
through successful laboratory testing and in-service performance. 

 

Figure 3-1 Example of OSD Box Girder Bridge Section for Modular Construction. Note the 
Repetition of Each Sub-panel of Cross-Section. 

3.1. GENERAL LAYOUT 

The important issues to consider in layout of the bridge and panel sections are constructability, 
serviceability, and inspectability (aerodynamics aside). Panel joints and splices should be 
proportioned to facilitate fabrication, handling, assembly, shipping, erection, and to keep the 
deck plate splices out of the primary wheel paths. Orthotropic fabrication requires careful 
planning due to unique challenges related to fit-up, weld execution, and distortion control. These 
issues are covered in more detail in Chapters 6 and 7. The general rules for steel bridge 
constructability apply also to OSD bridges. However, there is often motivation to maximize shop 
connections and minimize field welding. Economical solutions often involve bigger field 
sections since they are lighter than comparable concrete solutions. The designer should consult 
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potential fabricators for their input if they wish to explore layouts that may be outside the limits 
of conventional steel bridge construction.  

The OSD allows for the development of modular multi-girder bridge sections that are rapidly 
constructible. These may include smaller closed box girders or open T-shaped girders (which is 
the focus of Design Example 1 in Chapter 11). These types of modular girders are very stable 
during erection and are pre-decked, which minimizes construction time. Since conventional 
crossframes can be eliminated from these bridge cross-sections, very little elevated assembly 
work is performed by ironworkers. Also, once the girders have been erected, a safe working 
platform is established, providing easy access for workers without the need to tie off and for the 
staging of materials. Furthermore, the construction can be executed more quickly than a 
conventional bridge with cast in place concrete deck, which minimizes traffic congestion during 
construction. The conventional cast in place concrete deck, which is one of the most time 
consuming stages of the construction due to curing requirements, is replaced with a simple 
wearing surface overlay.  

Since OSD bridges have a relatively large amount of steel surface area with corrosion potential, 
serviceability must be considered in the development of the bridge cross-section. For this reason, 
closed sections that minimize exposed area are preferred. This will minimize the initial cost of 
the coating system, as well as future maintenance costs. Designs of many of the modern long-
span bridges worldwide have employed a single-cell box girder section with a dehumidification 
system for the interior air space (Sorensen, 2004). No interior corrosion is possible if the relative 
humidity is kept below 60 percent. Such an approach only requires a simple prime coat on the 
interior surfaces, which can reduce the painted area by up to 80 percent and provide essentially 
unlimited resistance to corrosion (Gimsing, 1998).   

In selecting the general cross-section, consideration of inspectability is also very important. The 
OSD bridge has the potential for fatigue damage due to the sheer volume of welded steel details, 
and should be routinely inspected to identify any cracking that may develop; particularly in the 
early years of service. This is discussed in more detail in Chapter 8. Any closed box girder 
should be detailed carefully to permit inspector access. The single cell box girder cross-section 
provides the best solution to facilitate this inspection. Although the interior of a box girder is 
considered a “confined space” that may require special inspector training, this bridge type can 
easily be routinely inspected without disruption of traffic. More importantly, all welded details 
can easily be inspected at close proximity by the inspector, if necessary.  

For examples of OSD bridge cross-sections that have been constructed throughout the world, the 
reader should consult Troitsky (1985), Mangus and Sun (2000), or Huang et al (2008). 

3.2. ORTHOTROPIC PANEL DETAILS 

OSD panels are generally classified as either open-rib systems or closed-rib systems (Figure 
3-2). In either system, the ribs are arranged in the longitudinal direction of the bridge for 
distribution of wheel loads to FBs, and to provide increased flexural rigidity to the primary 
girder(s). When ribs are oriented in the transverse direction, the situation for the durability of the 
surfacing worsens due to the “washboard effect” that is created by passing wheel loads 
(Sadlacek, 1992). The ribs can be made discontinuous to fit between the FBs; however, current 
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practice is typically to make them continuous through cut-out “windows” in the web plates of the 
FBs (such a discontinuous connection would not be allowed by current United States welding 
standards).  OSDs subjected to direct wheel loads are typically stiffened with closed ribs, while 
other structural elements such as box girder flanges may be stiffened with either closed or open 
ribs.  

 

Figure 3-2 Common Rib Types for Orthotropic Decks including Closed and Open Ribs 

The FBs are usually made from steel plates welded together or a rolled section in the shape of an 
inverted T-section, and the top flange is formed by the deck plate. FBs are usually spaced from 
3.05 to 6.1 m (10 to 20 ft), depending on the rib system employed. Obviously, increasing the FB 
spacing requires fewer of the costly rib-to-floorbeam (RF) intersections.  Longer rib spans have 
been utilized in a few instances (Wolchuk, 2004), but the performance of such designs under 
heavy traffic has not been well proven. It is difficult to control the fatigue stresses at the RF 
intersections for long rib spans. An additional consideration for FB spacing is the transverse 
spacing of the main girders (i.e., FB span). That is, a relatively larger FB spacing should 
accompany a larger FB span. 

3.2.1. Open Rib Systems 

Open ribs can be made from flat bars (most common), bulb shapes, inverted T-sections, or angles 
(Figure 3-2). They usually vary in size from 9 mm by 203 mm to 25 mm by 305 mm (3/8 inch by 
8 inches to 1 inch by 12 inches) along the cross-section of the bridge, and are spaced 
approximately 305 mm to 406 mm (12 inches to 16 inches) on center. Span lengths of open rib 
systems are generally in the range of 1.52 m to 3.05 m (5 to 10 ft).    

Experience indicates that it is simple to fabricate the open ribs and vary the rib dimensions as 
required for the various parts of the OSD. The field splicing of the open ribs is also relatively 
simple, and the bottom of the open rib deck permits easy access for inspection and maintenance.   
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There are two main disadvantages of the open rib deck system. First, it is torsionally soft relative 
to closed shapes.  This means that it is not very efficient in distributing transverse loads such as 
wheels from one rib to adjacent ribs. This results in more ribs, closer FB spacing, and hence, 
more steel per square foot than a comparable closed rib system. Secondly, the total amount of 
welding required to fabricate the system is approximately double the amount required for a 
comparable closed rib system (i.e., a pair of vertical rib elements requires four lines of weld to 
the deck plate as opposed to two lines for a closed rib). 

While modern OSD designs typically do not use the open rib for deck plates subjected to direct 
traffic loading (see article 3.2.2), open ribs are still often used to stiffen box girder webs and 
bottom flanges. Open ribs can be preferred in curved bridges due to ease of bending.  They are 
also sometimes used in the vicinity of other structural components, such as barriers, to provide 
space for connections. Thus, economical designs may include some combination of open and 
closed ribs in the bridge cross-section. 

3.2.2. Closed Rib Systems 

Most common among the many types of closed ribs are the trapezoidal, U-shaped, and V-shaped 
ribs (Figure 3-2). The most commonly used section is the trapezoidal rib. It has been found to be 
the most useful by engineers and the worldwide steel industry.  

The closed-rib system is the preferred system relative to open-ribs for a number of reasons. First, 
it has much higher flexural and torsional rigidity. The high torsional rigidity contributes to better 
distribution of concentrated transverse loads and, consequently, to a reduction in stresses in the 
deck plating. Fewer welds, less distortion, and reduced steel weight are further advantages. 

A complication of the closed rib system is in the execution of the one side partial penetration 
weld for the rib connection to the deck plate (RD connection). This fatigue sensitive weld 
requires care for fabricators to execute with consistent quality. Also, due to its geometry and 
inherent torsional strength, closed rib decks are subject to local secondary deformations and 
stresses that make them vulnerable to fatigue at the intersection with the FB (RF connection). 
Furthermore, field splices of the ribs are also more complicated, and this system requires 
tolerance control in fabrication and erection to ensure proper fit at the splices. 

Although the trend to greater rib span lengths is present with closed rib systems, this is limited 
by larger cut-outs in the webs of the FB that are detrimental to FB shear resistance. In addition, 
deflections associated with large local transverse curvatures may lead to premature failure of the 
wearing surface. 

3.2.3. Rib Proportioning  

It is typically during preliminary design (i.e. prior to the execution of any analysis or testing) that 
the rib spacing, span, and stiffness, as well as the deck plate thickness, must be selected. General 
rules for limits on these proportions are provided in the Eurocode (ECS 1992). Generally, ribs 
for deck plates should be spaced center-to-center at no more than 760 mm (30 inches) with rib 
walls separated by 380 mm (15 inches), which provides a uniform support spacing of 380 mm 
(15 inches) for the deck plate in the transverse direction. This limits local bending of the deck 
plate and differential displacements between ribs from wheel loads to increase longevity in the 
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wearing surface and reduce stresses in the rib-to-deck (RD) weld. Ribs for panels not subjected 
to traffic loading can be spaced further apart.  

As stated previously, the deck rib span should be made as long as possible while still limiting 
stresses at the FB to safe levels. The Eurocode (ECS, 1992) provides a useful guideline for the 
minimum rib stiffness as a function of rib span (Figure 3-3). Note that two limits are provided, 
one for ribs adjacent to the girder web and one for typical ribs away from the girder. Increased 
rib stiffness adjacent to the girder web is necessary to prevent cracking of the wearing surface at 
the girder. 

 

Figure 3-3 Guidance on the Minimum Rib Stiffness as a Function of Rib Span as provided 
in the Eurocode (ECS, 1992) 

As a design aid for preliminary sizing and stress computations, section properties for trapezoidal 
closed ribs are presented in Appendix A. There, rib depths vary from 203 mm to 356 mm (8 
inches to 14 inches), wall thicknesses vary from 6 mm to 11 mm (1/4 inch to 7/16 inch), and the 
upper rib width varies from 292 mm to 387 mm (11 1/2 inches to 15 1/4 inches) with a fixed 
bottom flange width of 165 mm (6 1/2 inches). For further guidance on selection of reasonable 
OSD rib proportions, Figure 3-4 summarizes detailing proportions used on a number of recent 
(as of 2011) projects worldwide that used the trapezoidal rib section. Note that there is little 
variation in the proportions as these details have proven to be cost effective and have performed 
well. The final detailing dimensions, including the FB size and cut-out geometry (if used) must 
be determined by testing and/or analysis as outlined in the remaining chapters of this Manual. 
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Figure 3-4 Orthotropic Deck Proportions on Recent Worldwide Projects including the 
Basic Rib and Floorbeam Dimensions as Shown in the Sketch 

  

Bridge Name Bridge Type Location
Year

Opened
Superstructure

Type

h
(mm)

a
(mm)

b
(mm)

tr

(mm)

a+e
(mm)

L 
(mm)

td

(mm)

d
(mm)

tc

(mm)
FB

Cutout?

The New Little Baelt 
Bridge Suspension bridge Denmark 1970 Box girder 244 144 287 6 598 3000 12 3000 8 yes

The Faroe Bridges
Cable stay / 

continuous beam Denmark 1985 Box girder 294 148 287 6 620 4000 12 3250 10 yes
Pont De Normandie Cable Stayed France 1994 Box girder 243 193 293 7/8 605 3930 12/14 3000 16 yes
Hoga Kusten Bridge Suspension bridge Sweden 1996 Box girder 294 150 287 6 600 4000 12 4000 10 yes
Great Belt East Bridge Suspension bridge Denmark 1998 Box girder 294 150 287 6 600 4000 12 800 12 yes
Great Belt East 
Approach Continuous beam Denmark 1998 Box girder 294 150 287 6 600 4022 12 900 14 yes
Sutong Bridge Cable Stayed China 2008 Box girder 292 164 284 8 600 4000 14 4000 20 yes
Stonecutters Bridge Cable Stayed China 2009 Box Girder 339 150 298 9 600 3800 18 varies 12 yes

The Megyeri Bridge Cable Stayed Hungary 2008
Box girder/

 I girder 292 184 284 8 600 4000 14 1696 12 yes
Millau Viaduct Cable Stayed France 2004 Box girder 300 200 300 7 600 600 20 yes
Incheon Second 
Bridge Cable Stayed Korea 2009 Box girder 260 188.5 304.1 8 600 3750 14 3000 11 yes
Irtysh River Bridge Suspension bridge Kazakhstan 2002 262 207.7 324.1 8 628.1 4000 14
San Mateo Hayward Continuous Beam Caltrans 1967 Box girder 203/305 - - 16 3167 16/19 838 yes
Fremont Tied Arch Oregon 1973 Girder/FB 305 152 305 8 600 3430 13 1270 11 no
Golden Gate 
Redecking Suspension Caltrans 1985 Truss/FB 279 152 356 9 673 7620 16 305 13 no
Williamsburg Suspension New York City 1998 Girder/FB 279 165 356 9.5 724 3050 16 - 8 yes
Bronx Whitestone Suspension New York City 2005 Girder/FB 343 127 330 8 660 3010 16 - 19 yes
New Tacoma Narrows Suspension Washington 2007 Truss/FB 305 8 6100 16 1690 9 yes
Alfred Zampa Suspension Caltrans 2003 Box girder 305 166 356 8 660/726 6200 16 3000 26 yes
SFOBB Suspension Caltrans 2012 Box girder 345 - 300 12 600 5000 14 1370 yes
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4.  STRUCTURAL BEHAVIOR AND ANALYSIS 

This chapter provides the relevant information necessary for the engineering analysis of the 
orthotropic steel deck (OSD) bridge. The majority of the chapter is focused on the subject of 
fatigue behavior and evaluation of fatigue stresses using the finite element analysis (FEA) 
method. A cursory review of plate bending theory, Huber’s equations, and the Pelikan Esslinger 
Method for simplified analytical treatment of the OSD is provided for understanding the 
background and development of the theoretical behavior of OSDs based on classical (direct) 
analysis methods. This knowledge is valuable to the engineer for perspective on the design 
concept and potentially for future developments of more robust, simplified analysis methods. A 
synopsis of the historical evolution of OSD analysis can be found in the article by Kurrer (2011).    

It is well documented that OSDs have tremendous reserve strength for local lateral loads, such as 
truck wheels due to the phenomenon of membrane stiffening. Thus, fatigue limit states driven by 
local distortional mechanisms at critical details typically control the design. It bears repeating 
that in addition to global and local stresses, the conditions affecting fatigue in OSDs are 
generally from different mechanisms and must all be combined for analysis. Computational 
based structural analysis has been demonstrated to greatly facilitate this. The chapter ends with 
discussion on the stability of the orthotropic panel for evaluation of strength limit states. The 
behavior and analysis of wearing surfaces are covered exclusively in Chapter 9. 

4.1. EVOLVING PRACTICES 

The understanding of behavior in the OSD has been continually evolving since the original 
designs of the 1930s. In post-war Europe, structural steel was scarce when these structures were 
first being built, and minimization of material was the essential common practice. This approach 
to minimize material seemed to satisfy design requirements at a time when fatigue issues were 
not fully understood. Additionally, reliance was placed on asphalt wearing surfaces to spread the 
wheel live loads. The result was that deck plates spanning 305 mm (12 inches) between ribs 
could be as thin as 9 mm (3/8 inch). As such, deck plates began failing by fatigue cracking 
completely through the plate and would require periodic repairs by gouging and rewelding. Of 
note is that the current European trends that developed to retrofit these thin deck plates is to first 
repair the steel and then to provide shear studs and a thin layer of reinforced concrete up to 101 
mm (4 inches). 

In the 1950s, the practice of using OSDs advanced, as did structural steel which was typically 
227.7 MPa (33 ksi grade) at that time. More recently, Grade 345 (Grade 50) steel began being 
used starting in the early 1990s, yet rib sections have hardly changed, while deck plate thickness 
is on the increase. A major reason for this discrepancy is that one rib displacement relative to 
another impacts the performance of the wearing surface. Another reason is that design of OSDs 
is governed by fatigue, mainly where the ribs interact with the FBs. 

Historically, the area which has undergone the most dramatic evolution may be at the rib-to-
floorbeam (RF) connection. This issue evolved recognizing the rotation of the rib at the FB 
support and the resulting stresses. Evolution of the joint determined that in some cases a stress-
relieving cut-out was needed in the Floorbeam (FB) web to preclude high localized out-of-plane 
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stresses at the bottom of the rib, and to remove the weld from a point of maximum stress. 
Initially, engineering intuition as to how stresses flowed around the opening in the FB guided the 
design practice. That is, the need for a cut-out was correctly recognized, but a limited 
understanding about stress flow in the connection in combination with a scarce fatigue database 
(at the time incorrectly treating only perpendicular stresses at the toe of weld) steered engineers 
to conceive of the details such as those illustrated in Figure 4-1. 

Though illustrated in Figure 4-1, early OSDs did not have an interior bulkhead. It was later 
introduced, similar to the cut-out, for intuitive reasons such as the presumed in-plane stress flow 
in the web. It was thought that adding the bulkhead minimized excessive stress concentrations 
introduced by a large hole in the web.  Moreover, it was thought to minimize the distortion of the 
rib stem that would be created with the FB web stiffening the exterior side of the rib and no 
internal plate to provide resistance on the inside of the rib. The bulkhead was seen as a solution 
to this concern, and was proposed in response to cracking detected in the Westgate Bridge in 
Melbourne, Australia in the early 1990s. The cut-out was placed at the bottom of the rib, far from 
the deck plate, and was made shallow to achieve in-plane stress flow without excessive stress 
concentration around the hole. 

 

Figure 4-1 Early Versions of Stress Relief Cut-out Shapes for the Trapezoidal Shaped Rib 
showing the Use of and Stress Flow through Bulkheads  

For these initial designs, the length of the cut-out was determined mostly by trial and error and 
was intended to minimize the out-of-plane effects on rib and FB engendered by rib rotation about 
the transverse horizontal axis.  

Decks with this early shallow cut-out version outs did not fair well. Rib stems were failing below 
the top edge of the cut-out. Although analytical tools, such as the finite difference method, were 
available as far back as the 1970s to determine the cause of these failures, they were still a new 
technology, and engineering intuition again provided the next step. Often mentioned by OSD 
practitioners is the “Ostapenko Effect,” which surmised that the enlargement of the rib bottom 
face due to Poisson’s effect was the cause of stem cracking. This effect has been shown to be of 
little substance, yet led to the criterion that the height of the cut-out above the bottom of the rib 
needed to be one-third the height of the rib. This concept was written into the AASHTO LRFD 
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Bridge Design Specifications (AASHTO, 2010). These cut-out versions maintained that the 
termination of the cut-out be perpendicular to the stem, such that the principal stress in the 
diaphragm would be perpendicular to the rib-to-floorbeam (RF) weld. There is a known fatigue 
resistance database for this RF detail. Also, contrary to customary practice, the AASHTO LRFD 
Specifications prescribed fillet welds for the RF connection. The non-prescribed practice was to 
provide a wrap-around at the weld termination.  

To evaluate all of the conjecture with respect to the behavior of the cut-out, in 1998 a major full-
scale test was conducted at Lehigh University to assess the performance of an OSD prototype 
designed for the Williamsburg Bridge deck replacement in New York (Connor, 2002). This test 
and the FEA conducted in association with it indicated that the prevailing ideology was poorly 
conceived. The findings were as follows: 

• The bulkhead did not behave like a link for continuity in the stress flow. But, because of its 
disconnection to the deck plate, discontinuous horizontal shear caused it to act more like a 
beam in double curvature. The resulting stress fields are graphically illustrated in Figure 4-2. 

• The weakest ligaments in the continuum were the tensile portions of the diaphragm and 
bulkhead that showed root cracking in the bulkhead and toe cracking in the diaphragm. This 
has been called “type b” weld termination cracking by some researchers (Figure 4-3). 
Complete Joint Penetration (CJP) welds where root cracking takes place, instead of fillet 
welds, would have made the prototype last longer. 

• The predominate stress patterns in the FB and bulkhead were in-plane, not out-of-plane 
stresses, as it was assumed. The out-of-plane components were found to provide 
approximately 15 to 20 percent of the combined stresses, depending on the thickness of the 
FB. 
 

 

Figure 4-2 Horizontal Shear Stress Field through the Bulkhead showing the Tension and 
Compression Field Acting Diagonally 
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Figure 4-3 Common Cracking that May Occur at the Cut-out when Bulkhead is Used. 

Equipped with this knowledge, engineers studying the alternatives for redecking of the Bronx-
Whitestone Bridge conducted analytical parametric studies using FEA techniques. These studies 
were not necessarily exhaustive by research standards, but led to revelations that could not have 
been conceived by the use of simplified analysis techniques. The studies indicated that: 

• Where (following simplified analysis) the longitudinal stress (σlr) at the RF weld would be 
compressive, regardless of wheel position relative to the center line of the rib, the real 
response of the rib could be tensile or compressive, depending on transverse wheel position 
applied in the bays adjacent to the diaphragm (see Figure 4-4). This is because wheel-
eccentric loading produces torsion, displacing the rib laterally at mid-span, but with restraint 
at the diaphragm.  

• Tensile and compressive stresses could alternate on each face of each rib stem, depending on 
wheel transverse position. 

• Where early editions AASHTO LRFD displayed lack of awareness of the local vertical stress 
in the ribs stem (σvr), following simplified analysis, FEA indicated that the perpendicular 
edge of the cut-out to the rib represented an abrupt transition to these stresses, thus requiring 
a smooth transition as shown in Figure 4-4. AASHTO’s implication that a two-inch radius is 
just as bad as an abrupt transition was incorrect and laboratory testing provided better data. 
This was reported and discussed in detail at the Orthotropic Steel Bridge Conference of 2004 
in Sacramento, CA.  

• Although the bulkhead reduced in-plane diaphragm displacements, an advantage for the deck 
plate at the rib-to-deck-at-floorbeam (RDF), the internal abrupt transition of the bulkhead 
presented additional stress concentrations, fabrication problems, and extra cost.  

• It was realized that, although a thickening of the web would increase the out-of-plane 
bending rigidity of the diaphragm plate (and increase stress), it would reduce the in-plane 
stresses by a greater amount. It would also reduce stresses in other stress concentration areas 
(such as at the RDF), where resistance is low. Thus, the optimum diaphragm thickness 
depends on the entire geometry configuration. The current trend is toward a thicker 
diaphragm web to reduce the RDF stresses, when an internal bulkhead is not used. 
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Figure 4-4 Rib-to-Floorbeam (RF) Connection Showing the Improved Smooth Cut-out 
Termination and Relevant Stresses to be Considered at the Joint 

Test results published in August 2007 from the University of California - San Diego indicate that 
behavior as predicted by FEA analyses relative to rib stresses (σvr) could also occur in new major 
structures fabricated with an abrupt transition cut-out or bulkhead (Sim, 2007). These cracks 
were not at the toe in the FB cut-out termination but in the toe in the rib stem (Figure 4-3).  This 
has been called type “a” weld termination cracking by some researchers. Note that type “a” 
cracking could emanate from either face of the rib, depending on which weld toe is lower in the 
bulkhead/cut-out arrangement. 

In Europe and Canada there were parallel developments in a design without a cut-out in which a 
round-bellied rib, which passes through the FB, was welded all around it from end-to-end of the 
rib. Practitioners who developed this design determined that, as a rule of thumb, when the depth 
of the FB and the rib depth have a ratio d/h > 2, the design would succeed. Obviously, this ratio 
is predicated on specific rib rigidities and FB spacing. It is clear from Figure 4-5 that the concern 
is to minimize out-of-plane bending stresses in the FB web, and that, should the ratio d/h be less 
than 2, this must be remedied by a more rigid and heavier rib that would rotate less. Also, an 
intermediate diaphragm that would spread the load to more ribs can be used. The advantages and 
disadvantages of such a design without cut-out are described below: 

 

Figure 4-5 Sketch of Rib-to-Floorbeam (RF) Connection Elevation and Section Showing 
Exaggerated Out-of-plane Deformation of the Rib and Floorbeam Web Bending when no 

Cut-out is Used 
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Advantages 

• Fabrication would be less costly. The history of the cut-out design shows that smooth 
terminations are often required with associated grinding. Estimates of savings range from 25 
to 40 percent less costly when considering the cost of the FB connection to the rib. Total 
reduction in deck costs have been reported as 15 percent. The validity of these figures should 
be taken cautiously, as they represent the opinions of a small sample of fabricators. 

• From the point of view of stresses at the RDF, this design is much better than the cut-out 
design without the bulkhead because it reduces the in-plane distortion of the tooth (see Figure 
4-5) as it engages the deck plate. This reduces the tooth’s displacements (or leading edge 
upward vertical displacement, trailing edge downward), which in turn reduces bending of the 
deck plate spanning over the trough of the rib, thus helping the longevity of the RDF detail. 
Another advantage is that the wheel load cannot cause as large a vertical displacement of one 
tooth relative to its neighbor, as would a design with the cut-out. This also helps reduce deck 
plate bending at the RDF. 

 

Thus, the advantage is not only in reducing internal effect at the RDF and eliminating the 
stresses at the termination of the cut-out, but also of eliminating a significant number of 
connection details where a bulkhead might be needed otherwise. 

Disadvantages: 

• To reduce longitudinal stresses at the bottom of the rib to a level somewhat below Category 
C (fatigue categories are discussed later in this chapter), the rib needs to be made 
considerably stiffer than as in the case of the cut-out.  

• FB web out-of-plane stresses are higher. 
 

Notwithstanding the good performance of these designs over the past 30 years in many bridges, 
the data come from field experience with many unknowns. That is, there have been some notable 
failures due to improper joining, and there is not any significant amount of data from testing with 
known loads. While such performance may be indicative of good design, it is not of long enough 
duration to guarantee good performance past 100 years. Furthermore, the system may be 
satisfactory only for limited spans when applying the rib proportions used in past practice.  
Regardless, the system has very good potential to be successful.   

Future Use of the Internal Rib Bulkhead  

There is a widespread belief in the industry that bulkheads do not provide sufficient benefits and 
present problems, such as: 

• They are costly to fabricate and present abrupt terminations, which should be alleviated by 
grinding if analysis indicates as such. 

• Failures of the welds attaching the bulkhead are not able to be inspected and cracks could 
eventually turn into the stem. 

• Alignment is not assured with the FB, since the rib and deck plate are attached prior to FB 
placement, possibly introducing additional secondary displacements and stresses.   
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Therefore, it is recommended that the bulkhead be avoided when possible. As such, new designs 
should start without it. In cases of introducing a new OSD on an existing structure that offers 
little head room and requires an exterior cut-out, and has a relatively flexible FB, the bulkhead 
may help reduce stresses at the RDF sufficiently to make an OSD design viable. 

4.2. BEHAVIORAL MECHANISMS 

The conventional method of bridge analysis is to assume that the complete structural system is 
comprised of several basically independent sub-elements such as the deck, stringers, FBs, and 
primary superstructure. This approach is based on the assumption that each element acts 
relatively independently and transfers load from itself to the next element without consideration 
of the real interaction among the various sub-elements. For most applications, this has shown to 
yield conservative designs and can be implemented with a simplified design methodology. In the 
OSD bridge, the deck plating, ribs, FBs, and main girders are all integrated into one structural 
unit. The deck panel must perform several functions simultaneously, including distribution of 
wheel loads and acting as the top flange of both the FBs and main girders. The fact that the OSD 
performs all these functions results in a very efficient utilization of material but the interactions 
cannot be ignored.  

In the mid 1900s, prior to the widespread availability of modern FEA software, it was proposed 
to decompose the OSD structure into a series of pseudo sub-systems that are more easily 
understood and analyzed individually by simplified (non-computerized) methods. This led to the 
identification of a series of simple mechanistic “systems” that contribute to stresses in the panel. 
Once the stresses are calculated from analysis on each of these systems, they can be combined by 
the principle of linear superposition for verification of the applicable design limit states. The 
same basic approach to describing fundamental behavior is applied herein, with some extensions. 
Many of the behavioral systems identified by the pioneers in the field are still valid today. In 
addition, research conducted in recent decades has brought to light many local distortion 
mechanisms that were not originally apparent. The relevant behavioral mechanisms in the OSD 
when subjected to wheel loads are summarized in table 4-1 and discussed in detail in the 
following sections. 
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Table 4-1 Orthotropic Steel Deck Deformation Mechanisms 

 

4.2.1. Local Deck Plate Deformation – System 1 

Load distribution begins with transfer of local wheel loads from the deck plate to the supporting 
rib walls. The response is influenced by the spacing of the rib walls and relative thickness 
(flexural stiffness) of the deck plate and ribs. It is noted that the stresses generated from this 
mechanism are localized and thus sensitive to the size of the wheel patch load and any load 
dispersion that may occur through the wearing surface. Very often, it is the front axle of the 
design truck with only a single tire that can maximize response from this mechanism. It is also 
noted that this system is one driving factor in the fatigue of the RD, but is generally not a 
concern for strength based limit states. Simplified analysis of System 1 stresses can be 
accomplished by employing a finite strip (frame) model of the OSD cross-section in the 
transverse direction with assumed rigid supports for the ribs, or elastic flexible supports based on 
the rib flexural stiffness and span length. 
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4.2.2.Panel Deformation – System 2 

By far, the most complicated system to analyze is System 2. Analysis of this system requires an 
understanding of the two-way load distributing behavior of the OSD panel when subjected to 
out-of-plane loading, which is a complex problem. Early engineering solutions that used OSDs 
had an ideological underpinning to the theory of elasticity of plates (plates loaded normally to 
the plane of the plate). This solution was founded in Huber’s Equation: 
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This equation represents the static equilibrium of a plate of uniform thickness with orthogonal 
and torsional properties,  

where: 

 Dx = plate flexural rigidity in the x-direction 
 Dy = plate flexural rigidity in the y-direction 
 H = effective torsional rigidity of the plate 
 p(x,y) = the loading at any point on the plate with coordinates of (x, y) 

To solve for the stresses, presuming Dx, Dy, and H can be estimated, it is necessary to find 
w(x,y), the vertical displacement in the z direction that satisfies the homogenous and particular 
solution of the loading p(x,y). The moments per unit length are then given by: 
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where:  

Dxy  =  ( )yyxx DDH νν −−2
4
1 ,  

ν  = Poisson ratio in each respective direction. 

Stresses are then derived from cross-section properties per unit length. Huber’s equation is 
derived with the assumption that axial forces in the plane of the plate are not present.  

The differential equation lends itself to solutions by Fourier Series. Rigorous solutions of this 
equation for OSDs are truly daunting tasks when FBs represent either discontinuities in the 
continuum or uncertain boundaries with which compatibility is necessary, but whose 
displacement is not easily understood. Recently, Higgins (2003, 2004) successfully applied this 
solution technique for calculation of moments and deflections in filled grid deck systems, which 
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is supported by FEA and experimental results. However, OSDs with closed ribs have added 
complications due to increased torsional rigidity of the ribs. Single closed ribs must be smeared 
into a uniform property of an idealized plate. This is an idealization whose errors are not known. 
The most widely accepted solution to this equation was first proposed by Pelikan and Esslinger 
(1957).  

The pioneers who developed these analytical techniques were practical individuals who knew 
how to make reasonable assumptions in an era when little was known about fatigue and the aim 
was to determine conformance to allowable stresses for service evaluation, in which even large 
local error is not important, because of the high ultimate strength of the deck. As expressed in the 
Design Manual for Orthotropic Steel Plate Deck Bridges (AISC, 1963), the simplifications 
attributed to Esslinger and Pelikan are as follows: 

Open Ribs 

• The deck plate is treated as a beam, i.e., the plate is given rigidity in the short direction, from 
rib to rib. Deflection and flexure (at 178.7 MPa [25.9 ksi]) and shear criteria governed, 
giving a 9 mm (3/8 inch) thickness over a 305 mm (12 inch) rib spacing, for a 53.4 kN (12 
kip) wheel load. 

• The wheel load is distributed to adjacent ribs as in a beam on elastic foundations. 
• Effective width of deck plate (used to calculate the rib/deck plate composite properties over 

major rib carrying load) is a function of its share of the wheel load and of the “effective” rib 
span. The effective width is usually larger than the actual rib spacing. The effective rib span 
is always 0.7 times the actual span. 

• Ribs “near” the FB support are treated as resting on rigid foundations, and ribs “near” FB 
mid-span are treated as resting on flexible foundations. Ribs near mid-span have larger 
positive moments and smaller negative moments than those near FB support. The Design 
Manual for Orthotropic Steel Plate Deck Bridges (AISC, 1963) gives moment relief 
formulae, based on sinusoidal deflection of the FB. 

• In short, concepts of orthotropy are abandoned in favor of partial compatibility between 
beams. Global transverse rigidity is ignored; influence lines for beams are invoked. 

 

Closed Ribs 

• The torsional rigidity of the deck plate is governed by G, K, and μ as defined by the 
following equation: 
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• Where G is the shear modulus for steel, K is a factor representing the physical properties and 
geometries of the rib such: 
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where  

Ar    = area enclosed by the closed rib;  
u    = entire length of the closed rib plate;  
a    = rib width where it is joined to the deck plate;  
tr    = thickness of the rib plate;  
tp     = thickness of the deck plate; 
e    = spacing between ribs stems of adjacent ribs – i.e. a + e = rib spacing;  
μ    = a number less than 1 which accounts for the reduction of the torsional rigidity 

due to the flexibility of the deck plate. The Design Manual for Orthotropic 
Steel Plate Deck Bridges (AISC, 1963) provides lengthy formulae for 
evaluating this factor for four closed-rib geometries; and 

H  = distributed torsional rigidity per unit width of deck.  
 

• The transverse rigidity of the deck plate and the ribs are ignored. 
• Esslinger/Pelikan solved the Huber differential equation and developed charts for 

longitudinal moments for various loads and spans. 
• Adjustments are made to moments based on FB rigidity, the same way as is done for open 

ribs. 
 
Unfortunately, torsional moments at the deck FB support were not sought in the original work. 
Also, the introduction of a stiffening intermediate FB that is not supported on the girders, but 
merely spreads the load to more ribs, is a complication that was not dealt with. 

The primary value of this method is that it provided a direct solution technique for the OSD. The 
solution also reveals that the response of the orthotropic panel under System 2 is influenced 
primarily by the flexural and torsional stiffness of the ribs. Closed ribs have increased torsional 
stiffness over comparable open rib sections and thus provide increased load sharing and reduced 
differential deflections to minimize rib, deck, and wearing surface stresses. This solution is now 
mostly obsolete, as alternate solutions and the introduction of FEA have demonstrated its 
shortcomings. This method, however can provide insight as a secondary check for rib moments 
and shears, as well as provide a basis of comparison for overall geometry.  

It is noted that deck plate and wearing surface stresses are caused primarily by the combination 
of: 1) flexure of the deck plate between the rib walls due to the wheel loading (System 1) and 2) 
flexure of the deck plate due to differential deflection of the adjacent ribs (System 2). 

4.2.3. Rib Longitudinal Flexure – System 3 

After loads are distributed transversely among ribs by System 2, the individual ribs then transfer 
load in the longitudinal direction to the FBs. In this mechanism, the rib can be considered as a 
continuous beam on discrete flexible supports. The System 2 will provide the rib moments and 
shears for the ideal case when the FBs are rigid. The System 3 provides the rib moments and 
shears that result from the FB flexibility. The flexible FBs cause an increase in positive rib 
moments and a decrease in negative rib moments, as well as a decrease in FB positive moment. 
To complicate matters, the ribs have continuity across FBs in the longitudinal direction, and the 
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FBs have flexibility that interacts with the ribs, which is difficult to quantify by simplified 
analysis. Indeed, De Corte and Van Bogaert (2006) recently found that effect of shear 
deformations in the FB can have a large influence on the bending moments that occur in the 
longitudinal ribs. This is especially true when the FB contains cut-outs at the ribs, which reduces 
the overall shear stiffness.  

The Pelikan-Esslinger Method partially addressed this problem and provided a direct technique 
for assessment of changes in the rib and FB moments based on their relative flexibility. These 
techniques are demonstrated by numerical examples in the Design Manual for Orthotropic Steel 
Plate Deck Bridges (AISC, 1963) and Troitsky (1987). However, their work neglects the effects 
of shear deformation and is bound by the simplifying assumptions as described previously. An 
effective approach to assessment of this mechanism is to employ a simple 2-D “grid” model of a 
single rib with intermediate FBs or by analysis of a 1-D continuous beam with applied support 
settlement. Solutions to these simple problems can readily be found in the literature. 

4.2.4.Floorbeam In-Plane Flexure – System 4 

The next step in the load path is in transfer of load from the ribs to girders through the FB. The 
stresses in the FB are a combination of in-plane stress (flexure and shear) and out-of-plane stress 
(twisting) from rib rotations. The latter is discussed in more detail later. Much of the research on 
this system has been focused on determining the optimum cut-out geometry based on in-plane 
testing and analysis (Kolstein, 2007). Cut-outs with carefully selected geometry have 
demonstrated experimentally that the out-of-plane stresses can be kept below 17.25 MPa (2.5 
ksi), or 25 percent of the in-plane stress (Williamsburg and Bronx-Whitestone). Thus, the focus 
on the in-plane behavior may be justified in some cases.  

For simplified 2-D analysis of the FB, an equivalent Vierendeel model approach was proposed 
by Haibach and Plasil (1983) and has been adopted in the current Eurocode (ECS, 1992) (see 
Figure 4-6). In this model, the upper chord is equivalent to the actual deck plate. The chord is 
then pinned to vertical posts consisting of two parts. The upper part reflects the web area 
between the lower point of the cut-out and the deck plate (tooth). The lower part reflects the non-
disturbed web areas between the position of the lower chord of the model and the lower point of 
the cut-out. The lower chord consists of the lower flange of the FB and the non-disturbed web 
area. This model provides the horizontal shear force in each tooth, which is then resolved into 
shear and flexural stress by simple mechanics calculations.  

Although the Vierendeel model is a simple and direct analysis method for the in-plane behavior 
of the FB, it provides limited accuracy at the free edge of the cut-out. De Corte et al. (2007) 
proposed a two-step approach involving refined FEA modeling of a single tooth for 
determination of a geometric shape factor (concentration factor) that can be applied to the 
nominal stresses obtained from the Vierendeel model. This additional step is necessary to 
accurately quantify the cut-out stress. The other limitation of the Vierendeel model is that it 
provides no assessment of stress at the cut-out termination, which is arguably the most critical 
location for fatigue. Since refined FEA of the entire FB is no more difficult than FEA of a single 
tooth, it is recommended that the entire FB be modeled for more accurate in-plane analysis. 
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Figure 4-6 Vierendeel Model for Simplified Analysis of an Orthotropic Deck Floorbeam 
Showing the Qualitative Distribution of the Shear Force through the Tooth (adapted from 

De Corte, 2007) 

4.2.5. Floorbeam Distortion – System 5 

OSDs respond to the imposed load with effects that are primarily in two orthogonal directions 
and involve localized distortions at the FB. Immediately under the wheel, stresses in three 
orthogonal directions invariably materialize. The behavior of the deck insofar as it delivers loads 
to several ribs and to the FBs was described above. 

Over the past 15 years, the engineering community has come to realize that the most important 
aspect of OSD design is not how wheel loads are shared by adjacent ribs or what rib moments 
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can be expected over the FB at midspan or near support. Rather, the focus now is on what effects 
occur at the intersections of the ribs and FB and how these effects impact the local stresses in the 
plane of the FB, and on their survivability. 

During the last decade, laboratory testing in the United States and the use of FEA shed light on 
the behavioral effects along the FB and how the rigidity of the FB and deck plate interact in ways 
that are often in opposition. For example, an increase in FB thickness may improve RDF stress 
ranges, but could exacerbate them at the cut-out or at the welded all around detail. Or, 
introducing a cut-out may not need a heavy rib to keep stresses low where the rib is welded to 
the FB (RF), but it will weaken the performance at the RDF.  

 The local mechanisms that impact all rib/FB details along the FB or diaphragm are: 

• Out of plane distortion from rib rotation  
• In plane distortion from horizontal shear 
• In plane distortion from vertical displacement of the tooth. 
 

These deformations by diagrams are discussed and illustrated below, including the impact on 
points of stress concentration.  

Out of plane distortion from rib rotation: 

Figure 4-7 shows concentrations resulting from rib rotation at support. This behavior was one of 
the early industry concerns, but it has been discounted as the most important since the studies 
that have been previously mentioned in this chapter were completed. 

In plane distortion from horizontal shear: 

Horizontal shear effects exist internally in any flexural member where there are shear forces 
transverse to the axis of the member. From basic mechanics, this is represented by the quantity 
VQ/I. In OSDs, where discontinuities exist by virtue of the rib passing through the FB web 
opening, these effects take on a peculiar form that was illustrated in part in Figure 4-2 when a 
bulkhead is present. 
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Figure 4-7 Sketch of Rib-to-Floorbeam (RF) Connection Elevation and Section Showing 
Exaggerated Out-of-plane Deformation of the Rib and Floorbeam Web Bending when a 

Cut-out is Used 

Figure 4-8 and Figure 4-9 show the VQ/I effect at the FB in the condition found in a simply 
supported FB, with and without a cut-out, respectively.  

The VQ/I effect causes flexing of the tooth, which creates stress concentrations near the base and 
in the deck plate.  The concentrations indicated are more severe in the detail of the cut-out (see 
Figure 4-9) because the tooth is much weaker in-plane than the detail in Figure 4-8. It is noted 
that Figure 4-8 and Figure 4-9 are exaggerations intended to illustrate the VQ/I mechanisms, 
which in Europe is referred to, instead, as the Vierendeel effect. 

 

Figure 4-8 Deformation of the Deck, Floorbeam, and Rib Resulting from the VQ/I Effects 
on the Floorbeam Tooth, No Cut-out.  Stress Risers are Shown near the Bottom of the 

Rounded Rib 
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Figure 4-9 Deformation of the Deck, Floorbeam, and Rib Resulting from the VQ/I Effects 
on the Floorbeam Tooth, with Cut-out.  Stress Risers are Shown near the Top of the 

Rounded Cut-out Transition 

It is noted that the higher the cut-out is made, the worse the stress at the deck plate becomes, 
while the stresses at the rib stem diminish. Hence, optimal cut-out geometry needs to be 
developed with consideration of many factors. 

Finite element analysis (FEA) shows that stresses at the bottom of the deck plate are more 
concentrated at the leading edge of the tooth (where they are compressive) than at the trailing 
edge where they are tensile. Also, laboratory tests of full-scale models show greater damage at 
the RDF of the leading edge. 

The bulkhead detail is not shown under this behavior as the stresses were already shown in 
Figure 4-2. It is common knowledge that the bulkhead helps counteract the damaging effects of 
this behavior at the RDF, but it shifts concentrations to the terminations of the bulkhead where 
abrupt discontinuities exist (see Figure 4-3). 

In plane distortion from vertical displacement of the tooth 

Figure 4-10 illustrates the vertical displacement of the tooth to both flexure and compression 
caused by the wheel. This, in turn, impacts on the stresses in the deck plate where it meets the rib 
(the RDF detail). These phenomena were observed during parametric studies for design projects 
and were also reported by European researchers (De Corte and Van Bogaert, 2007). 

The size of the cut-out and the thickness of the FB impact the stresses at the RDF resulting from 
this distortional mechanism as well. To limit vertical displacements of the deck plate, the total 
remaining tooth dimension Dt should be as large as possible with the smallest cut out as feasible 
using a minimum radius after the termination, consistent with required fatigue resistances at rib 
and on the FB surfaces. A thick FB tooth reduces this effect, while it may increase out-of-plane 
effects by smaller amounts. 
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Figure 4-10 Application of a Wheel Load to the rib with a Cut-out and the resulting 
Vertical Tooth Displacement 

4.2.6.Rib Distortion – System 6 

This very important phenomenon was completely ignored until recently. In a closed-rib system, 
the rotation of the rib, when the wheel is at midspan and eccentric about the axis of the rib, 
causes the rib to twist about its center of rotation with consequent lateral displacement at 
midspan. The FB, however, represents a fixed boundary (in the plane of rotation).  

When there is a cut-out with or without a bulkhead, the boundary is partially fixed and has 
discontinuities that impose out-of-plane deformations in the rib stems, which engender high 
stresses relative to the available fatigue resistances. 

Figure 4-11 shows that these stresses are both longitudinal and “vertical” at the intersection of 
two hypothetical planes: 1) of the FB and 2) of the ribs stem. They are shown in the diagram 
with the heretofore conventional cut-out (on the order of h/3 in depth with an abrupt transition). 
This detail is presently not deemed optimal in many cases, as it does not provide sufficient 
resistance to fatigue stresses engendered by the distortion. 

By observation of the curvatures in Figure 4-11, it is evident that a shallower cut-out would 
create more severe effects at the cut-out termination. Also, while one stem displays tension due 
to distortion on the outside face of the rib, the opposite stem displays compression on the outside. 
Thus the stresses at the inside faces of the stems are reversed. Therefore, as wheels pass on 
opposite sides of the rib center line, reversal of stresses occurs in both stems at these 
concentrations. 
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Figure 4-11 Rib Distortion Effects showing the Various Points of Distortion at the Rib-to-
Floorbeam (RF) Connection 

To make the cut-out detail work well in combination with a bulkhead, the FB and bulkhead 
would both require smooth terminations to address the vertical distortion effects. While this 
satisfies theoretical considerations, difficult fabrication problems are envisioned on the bulkhead 
side to perform necessary grinding. 

4.2.7. Global – System 7 

This mechanism involves displacement of the primary girder plus orthotropic panel system as it 
spans between points of global support. This can be evaluated using conventional methods of 
structural analysis. For a suspended span structure, these stresses may include local demands 
from the girder spanning between cable anchorage points, as well as global demands from cable 
sag. Review of the various possibilities for superstructures is beyond the scope of this manual. 
To calculate the System 7 stresses, modeling very often uses simplified “spine” elements to 
represent the entire bridge cross-section, with application of the “effective width” of the OSD. 
This is covered in more detail below. 

4.3. EFFECTIVE WIDTH 

The orthotropic plate, when made an integral component of the bridge superstructure system, is 
subjected to stresses from both local and global response, as discussed previously. Engineers 
often conduct global analysis of bridges by modeling the entire superstructure cross-section with 
a simplified two-dimensional “spine” element and then determining the resulting plate 
component bending and axial stresses by subsequent calculation. OSDs often involve wide 
proportions relative to the girder web or FB spacing, which calls into question the traditional 
assumption of plane sections remaining plane from elementary beam theory. In this case, due to 
the action of in-plane shear strain in the deck plate, the longitudinal stresses in the parts of the 
plate remote from the web lags behind those nearer the web. For design purposes, it is often 
convenient when calculating stresses to replace the actual width of the flange with an “effective 
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width,” which will produce the same maximum stress resulting from the shear lag phenomenon 
by elementary beam theory.  

The effective width need not be determined when using refined analysis (as described in Chapter 
5), but the concept of effective width is intended to enable the design engineer to easily calculate 
the maximum stress on the OSD plate from actions on the primary girder or FB to ensure that, 
for applicable limit states, it is within allowable limits. It is noted that some definitions of 
effective width are made based on elastic first order analysis of stress, while others are based on 
inelastic behavior considerations and post-buckling behavior. The limit state under investigation 
must be consistent with the assumptions made in the definition of effective width. An example of 
this is the case of concrete slab effective width in a composite steel girder; for Service and 
Fatigue limit states the slab is considered fully effective, while for Strength limit states the slab 
has a reduced effectiveness.  

The first approach proposed for calculation of stiffened flange plate effective widths is found in 
Wolchuk and Mayrbaurl (1980) and is based on research by Moffatt and Dowling (1975 and 
1976). This work is based on linear elastic stress distribution observed from FEA. The following 
discussion focuses on the effective width of the box flange between the webs within the positive 
moment regions and in the negative moment regions in the vicinity of interior supports. Using 
the symbology provided in the reference, the effective width of a box flange is expressed as beff = 
ψB, where B is the total width between the webs and ψ is the effective width ratio (see Figure 
4-12). 

Curves (1) and (2) in Figure 4-12 apply to the maximum positive moment region of simply-
supported girders and continuous girders. The distance L = L1 is taken as the simple-span length 
or the distance between the points of inflection in determining the value of ψ for these regions. 
Curve (1) applies to unstiffened box flanges, while Curve (2) applies to stiffened box flanges 
with a ratio of the stiffener area to the box flange area As/Bt = 1. The values of ψ are to be 
determined for intermediate values of As/Bt by interpolation. One can observe that even for the 
extreme case of As/Bt = 1, ψ is approximately equal to 0.9 at L/B = 5. This value is corroborated 
by the work of Goldberg and Levy (1957), in which a minimum effective box flange width of 
0.89 was found for the case of L/B = 5.65.  

Curves (5) and (6) in Figure 4-12 apply to the cross-section over interior supports in continuous-
span girders. In this case, L = L2 is taken as the distance between points of inflection on each 
side of the support. If the distances between the support and the points of inflection on each side, 
C1 and C2, are unequal, ψ is determined as the average of the values of ψ for L2 = 2C1 and L2 = 
2C2. One can observe that at L/B = L2/B = 5, curves (5) and (6) indicate a range of ψ values of 
only 0.55 to 0.62. This reduction in effective width is attributable to the large vertical shear force 
near the support, and not only due to the fact that the flexure is negative.  
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Figure 4-12 Flange Effective Widths for Orthotropic Deck Panels and Design guide Chart 
(Wolchuk and Mayrbaurl, 1980) 

Curves (3) and (4) in Figure 4-12 apply at the inflection points or simple-support locations. In 
Wolchuk and Mayrbaurl (1980), the value of ψ is taken as a constant based on the value from 
Curves (1) and (2) within the middle L1/2 of the span, and is varied linearly between this value 
and the inflection point or simple support values, and linearly between the inflection point values 
and the interior support values. Obviously, this level of refinement in the assumed effective 
width may not be necessary in general.  
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For simplified analysis, the effective width of the deck, including the deck plate and ribs, acting 
as the top flange of a longitudinal superstructure component or a transverse beam may be taken 
as: 

• L/B ≥ 5: fully effective  
• L/B < 5: bod = 1/5 L 
 
where: 
 

L = span length of the OSD girder or transverse FB, 
B = spacing between OSD girder web plates or transverse FBs, 
bod = effective width of OSD, 
 

for Strength limit states for positive and negative flexure. Tests have shown (Dowling et.al., 
1977) that for most practical cases shear lag can be ignored in calculating the ultimate 
compressive strength of stiffened or unstiffened girder flanges (Lamas and Dowling, 1980) 
(Burgan and Dowling, 1985) (Jetteur, 1984) (Hindi, 1991). Thus a flange may normally be 
considered to be loaded uniformly across its width. Only in the case of flanges with particularly 
large aspect ratios [L/B<5], or particularly slender edge panels or stiffeners (Burgan and 
Dowling, 1985) (Hindi, 1991) is it necessary to consider the flange effectiveness in greater 
detail.  

Furthermore, consideration of inelastic behavior can increase the effective width as compared to 
elastic analysis. At ultimate loading, the region of the flange plate above the web can yield and 
spread the plasticity (and distribute stress) outward if the plate maintains local stability. Results 
from studies by Chen et al. (2005) on composite steel girders (including several tub-girder 
bridges) indicate that the full slab width may be considered effective in both positive and 
negative moment regions.  Thus, OSD plates acting as flanges are considered fully effective for 
Strength limit state evaluations from positive and negative flexure when the L/B ratio is at least 
5. For the case of L/B less than 5, only a width of 1/5th of the effective span should be 
considered effective. 

For Service and Fatigue limit states in regions of high shear the effective deck width can be 
determined by refined analysis or other accepted approximate methods.  Additionally, 
consideration of effective width of the deck plate can be avoided by application of refined 
analysis methods.  

If the designer prefers to do so, the procedures in the Design Manual for Orthotropic Steel Plate 
Deck Bridges (AISC, 1963) may be used as an acceptable means of simplified analysis. 
However, it has been demonstrated that using this procedure can result in rib effective widths 
exceeding the rib spacing which may be unconservative. 

4.4. LOAD PATHS AND LOAD DISTRIBUTION 

The important issues on the subject of load distribution in OSD bridges are related to: 1) the 
local dispersion of wheel loads through the wearing surface and 2) how wheel loads are 
transferred from the deck plate to the supporting superstructure girders. Accepted practice has 
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been to assume that wheel pressure loads are dispersed through the wearing surface at an angle 
of 45 degrees in all directions when a thick bituminous material is used. However, recent 
research has indicated that this approach is not always correct, and any load dispersion is more 
dependent upon the tire contact hardness (Battista et al, 2008). Although stresses in some of the 
OSD components are sensitive to the dimensions of the wheel patch area, any load dispersion 
may be lost at higher temperatures when the wearing surface material softens. Also, it is 
conceivable that in the future the thick wearing surface may be replaced by a thin surface with 
little dispersion capability. For these reasons, no dispersion will typically be assumed for design 
purposes, which is not considered overly conservative.  

The second important issue on the subject of load distribution is related to how wheel loads are 
transferred from deck to ribs to FBs to girders. The sequence of this load transfer has been 
described in detail previously in the section on behavior mechanisms. Most relevant to the 
analyst is the fraction of a wheel load that is carried by an individual rib in the OSD system. This 
is used to facilitate simplified one-dimensional analysis of the rib. For the panel mechanism 
(System 2), analytical and experimental results have indicated that wheel loads are typically 
shared transversely between three ribs for most typical panel geometries, i.e. the rib directly 
under the wheel and the neighboring ribs on either side. Thus, there is minimal accumulation of 
load in an individual rib from two side-by-side trucks. The single truck event controls the rib 
response.  

Field monitoring tests have also revealed that load distribution between ribs is highly dependent 
upon temperature and loading velocity. This is due to the viscoelastic material response and 
thermal properties of the wearing surface material. For accurate assessment of the load 
distribution accounting for these factors, prototype testing or refined FEA modeling is required.  

Based on typical proportions of modern closed rib panel designs (H/Dy > 0.05 and rib spacing > 
0.610 m [24 inches]), the Pelikan Esslinger Method indicates that using a wheel load distribution 
factor of 0.5 for rib design will yield conservative estimates of moment when the FB spacing is 
no less than 3.05 m (10 ft). Wheel load distribution factor should be taken as 1.0 for rib shear. 
Note that a ratio of H/Dy > 0.07 is recommended to provide sufficient resiliency for the wearing 
surface. 

4.5. FATIGUE PERFORMANCE OF STEEL CONNECTION DETAILS 

4.5.1. Rib-to-Deck Plate (RD) Weld 

The rib-to-deck plate (RD) weld is likely one of the most studied welded joints in OSDs. Interest 
in this connection is obvious as there can be 50 times the bridge length of the RD connection in a 
typical OSD, depending on the number of ribs in the panel section. Hence, economic fabrication 
and long-term performance of this detail are essential.  

Fatigue cracking at this detail has been observed to initiate at several locations, depending on 
various parameters pertaining to the connection, as will be discussed. Much of the cracking in 
the field has been in Europe (Kolstein, 2007), but there is at least one known case in the United 
States. Because of the importance of this connection and the observed cracking, there has been 
much laboratory testing of the joint. In fact, Kolstein reports that there have been 245 tests 
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distributed over nine independent research programs from 1974 to 2000. Unfortunately, many of 
the test programs, primarily the earlier data, does not realistically replicate the actual in-service 
stress range cycle. 

Field measurements at the RD indicated that the response of this apparently simple connection is 
rather multifaceted. The effects of multiple vehicles in different lanes, vehicles changing lanes, 
and wearing surface stiffness all can influence the stress ranges applied to the detail. And 
although the previous issues with respect to loading are important, the most studied has been 
related to the fatigue resistance of this detail. Both the response and resistance of the detail will 
be discussed in the following sections in the context of the AASHTO LRFD (2010) Fatigue limit 
state.  

Response 

Field measurements confirm that the response of the RD is driven by individual wheels of trucks. 
Stress ranges that are transverse to the rib wall in the deck plate and/or in-plane stresses (due to 
axial and bending stresses) in the rib wall contribute to the cyclic stress range producing fatigue 
damage.  

Although a small proportion of the stress range cycle is due to global effects, such as global 
compression of the OSD cross-section or FB deflection resulting in bending of the entire deck, 
these effects are generally small in comparison to the local bending that occurs directly under the 
applied wheel loading (behavior Systems 1 and 2 discussed in Section 4.2). Furthermore, these 
other loads primarily produce shear, tension, or compression stresses that are parallel to the weld 
axis (i.e., parallel to the weld toe and weld root). Hence, they do not generally present a concern 
for the Fatigue limit state. The local, and more critical, behavior is shown in Figure 4-13, which 
was taken from measurements made on the Williamsburg Bridge (Connor and Fisher, 2001). The 
gages, identified as CH90R and CH90D were installed on the rib and deck plate respectively, 
immediately adjacent to and perpendicular to the longitudinal RD weld. The individual axles of 
this five-axle truck are clearly seen in the data. 

It is also important to recognize that very often the total stress range cycle is the result of 
multiple vehicles in series. Note the data in Figure 4-14, which were obtained from a strain gage 
installed on the rib wall perpendicular and immediately adjacent to the longitudinal RD as two 
random trucks and one other vehicle passed (Connor and Fisher, 2001). It can be clearly seen 
that each truck produces a unique, but different, stress range cycle; the first truck produces a 
tension stress range, while the second truck produces a compression stress range. (The small 
stress cycle after the first truck is believed to be a passenger car.) The same observation was true 
for gages mounted on the deck plate or rib wall and measured stresses were either tension or 
compression, depending on the transverse position of the wheel load. In fact, for the second truck 
in Figure 4-14, the individual axles of the tandem can be made out. However, the front axle is 
not readily apparent, again illustrating the sensitivity of the detail to transverse position. 
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Figure 4-13 Measured Strain Response of Two Gages on the Rib and Deck Plate as 
Random HS Type Truck Passed (Note that Each Axle Produces an Individual Stress 

Cycle).   

 

Figure 4-14 Measured Strain Response at of One Strain Gage Adjacent to a Rib Due to the 
Passage of Two Random Trucks (Note that the First Truck Produces a Tension Stress 

Range while the Second Truck Produces a Compressive Stress Range) 

Observed Cracking  

Fatigue cracks have been observed to initiate at the weld toe located on the rib wall and deck 
plate, depending on the relative stiffness of the rib/deck plate system. In addition, cracking has 
been observed to grow out of the lack of fusion zone found at the RD (see Figure 4-15). Of the 
two types of cracking (toe or root), root cracking has the potential to result in the poorest fatigue 
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resistance. To prevent root cracking, the degree of penetration and the fit-up gap are the most 
important parameters controlling the performance of the connection. Large lack-of-fusion zones 
where the deck and rib wall come in contact effectively act as initial cracks within joints. Since 
these cracks grow from the inside out, once observed, they have already grown through 
thickness. In some cases, the cracks can be quite long (parallel with the longitudinal axis of the 
weld) once visible. In addition, due to the complex stress state at the connection, it has often 
been observed that root cracks will propagate into the deck plate, even though they initiated in 
the weld root, as the stress range in the deck plate is typically greater than in the rib wall. New 
research indicates that if the fit-up gap prior to welding is controlled, root cracking can be 
prevented (Wright, 2011). 

 

Figure 4-15 Rib-to-Deck (RD) Weld showing potential Locations for Cracking as noted by 
locations A though D in Response to Stresses in the Plates  

4.5.2. Rib and Deck Splices 

Rib and deck splices can be bolted or welded. Welded splices have a lower fatigue resistance, but 
are used to provide the most economical solution. The most common practice in the United 
States has been to use a bolted rib splice and a welded deck plate splice.  

Response 

In terms of live load, the ribs themselves primarily carry the moments and shears from passing 
wheel loads. The splices are generally located some nominal distance, roughly one to three rib 
depths, away from a FB/diaphragm. Measurements made near splices indicated that the rib and 
deck plate essentially behave as bending members, though some level of torsional moment also 
exists. The response of an individual rib is heavily dependent on the transverse position of the 
truck, as expected. For a gage installed on the bottom flange of a closed rib, the effects of 
individual axles and axle groups can be discerned. However, the individual axles of a tandem 
axle do not produce two unique and independent stress range cycles at this location. The same is 
not true of the response of the deck plate splice, which is subjected to direct wheel loads, similar 
to response of the RD connection discussed earlier. (That is, a three-axle dump truck would 
likely produce one primary stress range cycle due to the rear axle tandem and one smaller cycle 
due to the front axle at the bottom of the rib, while three individual cycles would be observed in 
the deck plate. This response is often referred to as a “camelback” response due to the two 
humps in the time history data”). 
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In many structures where an OSD is supported by a separate, primary FB (such is often the case 
in situations where the deck is installed on an existing structure) the flexibility of the FB must be 
included in the analysis. This is necessary since modeling a FB as a rigid support will not 
accurately reflect the response in the rib. Field and laboratory measurements have shown that 
due to the flexibility of the FB, tensile stresses (i.e., positive moments) could be expected in the 
bottom of some ribs due to the deflection of the FB. Thus, a rib splice may not only be subject to 
negative moments, as would be predicted assuming a rigid internal FB.  

The reason for this can be illustrated by considering the example of a continuous beam (rib) on 
elastic supports (behavior System 3 as discussed previously). If a point load were applied 
directly over the centerline of a flexible support (FB), a positive moment would be produced in 
the beam (rib) over the support (FB). However, on the deck, the load is moving and is directly 
over the FB for only an instant. Hence, as the load travels longitudinally, both a negative 
moment and a positive moment (due to the deflection of the FB) are generated in the beam (rib). 
The addition or superposition of these two moments produces the final stress range in the rib.  

It is also noted that the relative magnitude of the positive and negative moments are influenced 
by the FB stiffness, gross vehicle weight (GVW) and proportion of wheel live loads. Hence, 
heavy and light trucks will likely produce different proportions of negative and positive 
moments. The effects of FB flexibility are especially important to consider in situations where 
the OSD is installed on a cantilever overhang. 

Although the response of the lower portion of the rib is primarily driven by axles and axle groups 
as described above, the deck plate splice is subjected to stress ranges produced by individual 
wheels, as well as the more “global” bending of the rib/deck beam. Since the deck plate acts a 
top flange to the rib, the latter component is generally small due to the rather large area of the 
deck plate (i.e., the neutral axis is rather high). As a result, the fatigue design of the deck plate 
splice is generally controlled by the local load effects from individual wheel loads (behavior 
System 1). 

Observed Cracking  

Bolted splices have higher fatigue resistance than welded splices. For welded splices, both the 
deck plate splice and rib splice most often involve a one-sided full penetration weld, with 
backing bar often left in place. Focus is given here to deck plate splices since these are subjected 
to more severe loading from direct wheel loads. Rib splices have similar fatigue resistance, but 
stresses are primarily in-plane only. 

For welded deck plate splices, there are effectively two locations where fatigue cracking is a 
concern and each should be considered separately. Both are illustrated in Figure 4-16. First is 
throat cracking of the deck plate weld, whether or not the backing bar is left in place at the full-
penetration transverse groove weld. Second is toe cracking of the deck plate at the end of the 
longitudinal weld between the deck plate and the rib wall. Both of these details are subjected to a 
combination of in-plane and out-of-plane stresses. It is noted that if the backing bar is to be left 
in place, it is critical that any splices in the backing bar be made using CJP welds. There have 
been cases where cracks have initiated out of the lack of fusion zone present between backing 
bars that simply butted together (Kolstein, 2007)  Ceramic backing bars have also been used with 
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mixed performance, though generally, the observed problems were related to poor adhesion of 
the backing bar or improper execution. It is noted that if a ceramic backing bar is used, small 
vertical misalignments of the deck plate cannot be corrected as easily when a steel backing bar is 
used and strongbacks may be required. 

 

Figure 4-16 Detail at Transverse Groove Weld of the Deck Plate Illustrating the Two Types 
of Potential Cracking that Can Occur (Deflected Shape of the Welded Region is 

Exaggerated) 

The full-penetration groove weld is continuous across the width of the deck and is subjected to 
the vertical forces applied from individual wheel loads as each axle produces a single cycle. 
Hence, each passing wheel produces local out-of-plane bending stresses in the deck plate. The 
deck plate is also subjected to longitudinal in-plane stresses generated by the longitudinal 
bending of the OSD panel between FBs and the global response of the entire girder span. Of 
these three stress components, the local out-of-plane bending stress has been observed to 
dominate the stress cycle (Connor and Fisher, 2001).  

Figure 4-16 indicates the orientation of potential crack growth at the weld toe termination near 
the cope hole. Also indicated in Figure 4-16 is the exaggerated deflection of the deck plate due to 
wheel loads. The deck plate in this region acts as a beam with a span equal to the clear distance 
between the ends of the rib cope holes. At the edges of the cope hole, restraining moments are 
developed. The stresses produced by these moments dominate the stress cycle and may 
ultimately produce cracking at the weld toe if the Fatigue limit is exceeded. The presence of the 
weld toe at the termination of the RD aggravates the condition. 

4.5.3. Rib-to-Floorbeam (RF) 

The behavior, fatigue resistance, and evaluation of stresses adjacent to the rib-to-floorbeam 
connection (RF) are also well researched for OSDs. There have been many details that have been 
used to make this connection. Details with and without cut-outs, with and without internal 
bulkheads, various weld types, and plate sizes have been used. In addition, where cut-outs have 
been used, the geometry of the cut-out itself has been studied extensively.  
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It is important to recognize there is not a single solution that will work in every situation. One 
type of connection, though successful in one bridge, many not work in another due to differences 
in detailing, overall geometry, stiffness, and of course, loading. Nevertheless, there have been 
some concepts used that have such poor characteristics that they would likely result in premature 
failure in any bridge.  

Response 

Field studies have confirmed that the FB web plate is subjected to a unique stress cycle due to in-
plane and out-of-plane forces, as shown in Figure 4-17. Stresses are the result of behavior 
Systems 4 and 5 described previously. The same is observed in laboratory and analytical studies 
where boundary conditions and loads have been properly simulated. In many cases, the in-plane 
component dominates the stress range cycle, but this may not always be the case. For certain, the 
proportion of the out-of-plane stress-range can vary substantially from rib to rib, depending on 
the transverse position of the truck and the stiffness of the OSD. Likewise, in decks where the rib 
and/or the FB spacing is large, the out-of-plane component will be larger and may exceed the in-
plane component at some ribs. 

The proportion of the out-of-plane stress range in the FB plate is related to the rotation of the 
longitudinal ribs. Ribs directly under a wheel load rotate nearly the same amount at the FB 
regardless of the transverse position of the rib. This is because the relative stiffness and boundary 
conditions for each rib are essentially the same (excluding external ribs). The same is not always 
necessarily true regarding the in-plane component of the stress range cycle. Thus, although the 
magnitude of the out-of-plane stress range may often remain about the same from rib to rib, its 
contribution in the total stress-range cycle will vary. 

 

Figure 4-17 In-plane and Out-of-plane Stresses Measured at the Cut-out Near a Rib with 
Wheel Load Passing above, Demonstrating the Effect of the Truck Position on the 

Response (Connor and Fisher, 2004) 

 

M
Pa

 

Sec. 
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Another interesting observation can be made by examining Figure 4-18, which is data obtained 
as a random five-axle HS series truck passed. Shown in the figure are stresses measured in the 
deck plate near the FB, which clearly shows the individual stress-range cycle produced by each 
axle (CH_88D in Figure 4-18). However, contrast this response from the gages installed adjacent 
to the cut-out at two separate ribs. (i.e., CH_27 and CH_29 on Rib 5, CH_45 and CH_46 on Rib 
7; Rib 5 was directly beneath a wheel load).   Although just a few inches below the deck plate, 
the effects of the individual axles are already distributed such that their individual effects are not 
apparent. Thus, although this truck produced five individual cycles in the deck plate, only one 
primary stress cycle is produced by the truck (one smaller secondary cycle is present, but of 
much smaller magnitude). The behavior below is often referred to as a camelback response due 
its resemblance to the humps of a camel. The same type of observation has been observed 
through field measurements on other bridges (Connor and Fisher, 2001) (Connor and Fisher, 
2004).  

This is an important observation since it indicates that regardless of the configuration (i.e., H or 
HS type truck) the passage of a truck will produce in a single stress range cycle at the FB. The 
smaller secondary cycle produced during the passage of HS series trucks will produce essentially 
minimal damage. For example, the HS truck in Figure 4-18 produced a single primary stress 
cycle of about 60 MPa (8.7 ksi) at channel CH_27. The smaller secondary cycle is only about 20 
MPa (2.9 ksi), or 33 percent of the primary cycle. In terms of cumulative damage using Miner’s 
rule, the smaller secondary cycle contributes much less damage than produced by the primary 
cycle. Hence, it is clear that the secondary cycle contributes very little to fatigue damage. 

 

Figure 4-18 Detail of Response on Floorbeam Plate Due to Passage of a Long Random 5-
Axle HS Series Truck (Channel CH88D is Located on the Deck Plate) (Connor and Fisher, 

2004) 
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It is also clear that the primary stress range cycle is essentially driven by a single axle or group of 
axles spaced closely together (e.g. a tandem or tri-axle configuration). Thus, for long vehicles, 
such as tractor trailers, it is not the gross vehicle weight of the entire truck that controls, but 
rather the groups of axles. Of course, this depends on the spacing of the FB and the distance 
between axle groups. However, for typical trucks and common FB spacing, the above is a 
reasonably representative statement. Therefore, the assumption that each truck will produce a 
single primary cycle is appropriate for the FB cut-out in many cases. The same observation 
would be true for RF connections where there is no cut-out present. For short “H” series trucks, 
the group of axles comprising the truck will control and hence the GVW of the entire vehicle 
would need to be considered. 

4.5.4.  Rib-to-Deck at Floorbeam Joint (RDF) 

Where the rib-to-deck (RD) weld crosses the FB, a concentration of stress is created in the RD 
weld due to a local rigid support from the FB web, and from the distortions that occur by in-
plane flexure of the FB (System 5). Simple models such as a fixed-fixed beam solution have 
been proposed to assess the local stresses in the deck plate due to a wheel load placed directly 
over the RDF, however, this only treats deck plate flexure component of stress and the effective 
width of deck plate is not defined. Further, it is the distortional stress that may cause tension in 
the weld root which is thought to be more detrimental to the fatigue performance. Arguably, this 
is the least understood of all the OSD details and there may be need for future research to 
develop better analytical techniques. 

As with any detail on the deck plate, each passing axle produces an individual stress-range cycle. 
Hence, the weight of individual axles and not GVW will control the design. Clearly, the detailing 
of the joint drastically affects the response. For example, details with copes (rat holes) in the FB 
verses those with no cope will obviously behave differently, with potential cracking potential at 
different locations. Cope details have been applied in some countries to avoid intersecting welds, 
but there is no known evidence of problems arising directly from this. 

In the United States, the non-coped detail has been favored and the performance of the joint 
seems to have been adequate. It would also appear that from the literature, the non-coped detail 
has generally outperformed those where copes have been used. However, it is very important to 
point out that regardless of the detail used, most of the RDF cracking reported in the literature, 
particularly in Europe, has been observed on bridges where very thin deck plates were specified. 
For example, deck plates as thin as 9 mm to 11 mm (3/8 inch to 7/16 inch) were commonly used. 
In reality, it is not surprising that fatigue cracks appeared in these decks in a relatively short 
period of time (7 to 10 years). 

4.6. REFINED ANALYSIS FOR FATIGUE ASSESSMENT 

In all fatigue evaluations, a calculated (or measured) stress range is compared to some 
permissible stress range. The processes by which each of these parameters is established ranges 
from the very simplistic to the extremely complex. As with most analytical procedures, those that 
are the most complex require input that is often difficult to obtain. In addition, slight changes to 
the input can sometimes have drastic effects on the output, such as calculated life. However, the 
more simplistic methods, though “easier” to implement, may result in overly conservative and 
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uneconomical designs. Even more importantly, simplified analysis can lead to unconservative 
designs.  

Obviously, any analysis method must be capable of achieving the desired goal of the fatigue 
evaluation; that is, preventing premature fatigue cracking of the various components of the OSD. 
In order to achieve this goal, there are a few qualities the methodology must possess. These are 
listed, in no particular order: 

• Accurately accounting for the load effects from in-plane and out-of-plane forces. The model 
used to obtain these load effects must accurately simulate the actual 3-D behavior of the 
complete OSD and supports and how these forces enter the connection.   

• Accurately accounting for the effects of subtle changes in weld type and profile. It is well 
known that small changes in the type of weld and weld profile used at this connection can 
substantially alter the fatigue performance of the joint. This is especially true if a cut-out 
detail is used. Hence, the procedure must be capable of accounting for these parameters in 
the fatigue life prediction model. Note that this is different than the changes in stress range 
due to changes in the overall geometry of the detail or the system behavior discussed in the 
item above. For example, assume a cut-out detail was being evaluated for the Fatigue limit 
state. If a CJP weld were used, it would have a greater fatigue resistance than had the same 
geometry been used, but a fillet weld was used instead. Furthermore, if the CJP joint were 
used, but the welds were not ground smooth, the fatigue resistance would also be different 
for each condition. These subtle differences must be accounted for in some fashion in the 
model. 

• Producing consistent fatigue stress predictions. Ideally, the method will be applicable to all 
geometries, weld types and configurations for the joint and produce consistent estimates that 
are user independent.  

• The accuracy of the method should be verified. The ability of the model to accurately predict 
fatigue life must be verified. Predicted fatigue lives, crack locations, and other important 
parameters predicted by the method should be verified by comparing to experimental data. 
The data could be new or existing test data found in the literature could be used. The data 
would not need to be from the exact geometry to be used in the design. It should be from 
specimens that are very similar so that all important variables are included in the model and 
database. 

Such information can only be obtained using 3-D finite element modeling. Although the global 
behavior of selected components of the OSD system (i.e., the ribs or FBs) can be reasonably 
predicted with approximate methods such as Pelikan–Esslinger, none of the approximate 
methods provide ability to quantify the distortional stresses and displacements at critical details, 
like the RF connection. However, every documented performance failure of an OSD has been the 
result of localized stresses and not global response (Connor, 2002) (Kolstein, 2007). 

Generally, there are two established methods for numerical fatigue evaluation that are viable for 
use on OSDs: 1) a nominal stress S-N curve approach (e.g. AASHTO [2010]) and 2) a local 
structural stress approach (e.g. IIW [2007]). Each of the methods has advantages and 
disadvantages, which are discussed in more detail in Chapter 5. While one method may be 
appropriate for a certain type of detail, the same approach may not be the best or most efficient 
choice for another detail. 
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4.6.1.Influence Surface Analysis 

Accurate and efficient refined analysis of OSDs demands the use of influence surface based 
techniques. The stress response at critical details is often sensitive to the precise location of the 
wheel loading. Because of integral nature of the OSD and the complicated in-plane and out-of-
plane effects that exist at many details, the governing positions for loading are not always 
apparent by judgment. The total stresses at critical details are typically the result of multiple 
behavior systems as described previously, all of which may not have maximum response when 
the load is in the same position. Furthermore, fatigue evaluation requires quantification of the 
full range of response from the passage of trucks. Development of the influence surface reveals 
to the analyst where the wheel loads should be placed to maximize or minimize total response.  

An example of an influence surface at a critical orthotropic detail from Jong, et al (2004) is 
shown in Figure 4-19. This is the influence surface for strain in the topside of the deck plate near 
the location of the RDF from a wheel load of 50 kN (11.24 kip), with patch size of 50 cm. The 
model is a seven-span OSD panel with six ribs in the cross-section. The longitudinal position is 
measured from crossbeam 1 and the transverse position is measured from the left wall of Rib 2. 
As can be observed from the surface, it is only when the loading is located within 300 mm (11 
13/16 inch) transversely and 500 mm (1.64 ft) longitudinally to the point of interest that any 
significant response is observed. Also, the slope of the surface is very steep in all directions and 
contains a severe peak. Thus, for analysis, the wheel patch loading must be placed as close as 
possible to the precise location indicated by the peak to obtain the maximum response. 

Influence lines can also be used when the controlling position of loading is known in one 
direction. Influence lines require much less computational effort than influence surfaces, and 
should be used when possible. For example, local stresses at deck plate splices and RD can be 
assessed using transverse influence lines. Figure 4-20 shows the influence lines for stress at deck 
plate splice and RD weld from a dummy load of 44.5 kN (10 kips). The panel section consists of 
305 mm (12 inches) deep trapezoidal ribs spaced at 610 mm (2 ft) and span of 4.57 m (15 ft), 
with 19 mm (¾ inch) thick deck plate. This is the same panel geometry that is the subject of 
design Example 1 (see Chapter 12 for more details). From these lines, it can be seen that the 
maximum stress at the RD weld is in the deck plate at the toe of the weld. The shape of this 
influence line indicates that when a typical size wheel load is near the rib wall, this will 
maximize response. Although there is a small region of reversal for the portion of load at the 
weld, integration of the 0.51 m (20 inch) wide wheel patch superimposed on the influence line 
will show maximum net compressive stress when the load is nearly centered over the rib wall. 
As with the deck splice, reversal can occur from multiple trucks in series in different transverse 
positions. 
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Figure 4-19 Three Dimensional Plot of an Influence Surface for Deck Plate Strain at Rib-
to-Deck at the Floorbeam (RDF) Detail in Test Deck Panel showing the Sensitivity of 

Response to Wheel Load Position (Jong, et al, 2004) 

The influence line for bottom surface stress at the deck plate splice indicates that maximum 
response occurs when the wheel load is located midway between the two ribs as expected. Thus, 
a smaller wheel patch width that fits between two adjacent ribs will maximize the response, 
which can occur in a single tire steering axle. Also note that the total range of stress that is 
possible at this detail is the result of two trucks in series passing over this location in different 
transverse positions--one truck with wheel directly over the splice and a second truck 0.610 m 
(24 inches) to the right or left. Calculation of maximum possible stress range must account for 
this scenario. 
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Figure 4-20 Influence Lines Running Perpendicular to the Rib for Stress at Deck Plate 
Splice and Rib-to-deck Weld (RD) as shown for Various Locations of Concern in the Rib 

and Deck Plate 

Analysis may also use influence line development from longitudinal truck paths in fixed 
transverse positions. Figure 4-21 shows two influence lines for a stress concentration of a deck 
with an intermediate FB. The influence lines that are found by FEA contain St. Venant and 
distortion effects and all combined stresses. The paths “A” and “B” represented by the two lines 
in the figure are for two different transverse positions of the wheel (from the HS notional truck). 
It can be seen in Figure 4-21 that each position produces a different stress signature. The analyst 
may explore a number of influence lines (i.e. transverse positions) generated in this fashion and 
use the one that generates the maximum range.  

The present method of obtaining a maximum design stress range in the FB is to use the stress 
range of a single wheel position relative to the center of the rib (the position that gives maximum 
effect) and by multiplying this by the design load factor. The basis for this factor is discussed in 
more detail in Chapter 5. For more accurate calculation of the effective stress range at sensitive 
details, the Monte Carlo Technique can also be used. When a truck weight spectrum 
representative of the expected traffic on the bridge is adopted along with a distribution model of 
the wheel transverse positions, a simulation of the stress environment can be obtained from 
which a complete stress range spectrum is derivable. For further information on derivation of the 
stress range spectrum, see NCHRP Report 299 (Moses et.al., 1987). 

 

69Mpa 

138Mpa 

69Mpa 



58 
 

 

 

Figure 4-21 Comparison of Influence Lines (Parallel to the Rib) for Stress in the Rib-to-
Floorbeam (RF) connection at Different Transverse Wheel Positions 

4.6.2.Evaluation of Stresses 

At the end of the 1970s, fatigue problems of welded structures were better understood and the 
“nominal stress” approach to evaluating fatigue resistance became standard assessment 
procedure. However, simplified techniques were used to evaluate stresses at the FB cut-out (i.e. 
those longitudinal flexural effects derived from moments found by the Esslinger-Pelikan 
method). These techniques are incapable of providing distortion and other local stresses that 
must be added to the primary, MC/I effects. They are a source of grave underestimation of the 
longitudinal (horizontal) rib plate effects at the FB, while the local vertical effects in the rib stem 
that are funneled into the FB termination are completely ignored. There are no simplified 
techniques that allow the practitioners to assess distortion stresses in this case.  
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Hence, there are two ways of correctly assessing stresses in continua in such a condition as a rib 
going through a FB, the FEA method and strain-gaging (laboratory testing or in-situ). The first is 
widely accepted, broadly used and highly efficient. The latter is equally effective, but must be 
used on a prototype faithfully fabricated and loaded. Strain-gaging is typically used on existing 
structures, or for field testing of design prototypes. At the planning as well as final design stages 
the FEA technique is indispensable. This perspective is supported by many codes, including: the 
International Institute of Welding (IIW) Recommendations; the Det Norske Veritas (DNV); the 
British standards; the proposed AWS provisions for fatigue evaluation.  

In welded structures, fatigue propagates from two characteristic locations, assuming the weld is 
sound and not internally damaged:  

• Toe cracking 
• Root cracking 

The aim of the engineer is to check in all locations of high stress concentration due to postulated 
geometry and calculated behavior (both primary and secondary effects), and how the stresses at 
the weld compare to the presumed resistance of the same. The critical locations for evaluation 
are presented in detail in Chapter 5, Design.  

When fatigue analysis is used for evaluation of expected life, it may require a distinction as to 
whether the stresses are uniform across the plate thickness. Stresses can be uniform (in-plane) 
through the thickness, variable due to flexure, or are a combination of both. The techniques here 
described will give all the possible combinations that the engineer may want to evaluate. 

Stress evaluation at weld toes presents technical problems to the analyst that uses the FEA 
technique, in that the angle the weld makes with the base material represents a sharp 
discontinuity. At that precise point, the discontinuity will cause the model to show a sharp 
increase in stress that is not in any way similar to the calculated stresses used to produce the 
fatigue database that created the widely adopted S-N curves. Thus, the concentration part of the 
stress that is treated as a black box in the baseline data provided in the AASHTO nominal stress 
provisions must be eliminated from the assessment of the stress for such data to be of any use. It 
follows that to any modeling technique, there must be associated a calibration method to bring 
the estimated stress in line with the procedure used to evaluate stresses for the production of the 
database.  

Finite element meshing can be accomplished using shell plate elements or brick elements. It is 
the consensus of the industry at this time that shell plate elements are adequate to characterize 
structures and local effects that are typically composed of relatively thin material with small 
effects in the through-thickness direction. This does not prohibit analysts to use brick element 
techniques, should they so desire, as calibration techniques are available for both. 

There are two accepted techniques that provide this calibration. Both use databases that are 
dissimilar to that adopted by AASHTO. They are: 

• Extrapolation. 
• The Battelle Structural Stress (BSS) (Dong, 2006).  
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The extrapolation method is more widely accepted and is discussed further below.  

Extrapolation  

Figure 4-22 shows diagrams of conceptual connections for the purpose of illustrating 
concentrations at weld toes in abrupt transitions and in continuous fillets. In most cases, shell 
element sizes t•t are standard for determining toe of weld stresses, where “t” is the plate 
thickness of the smaller element. Brick elements are often invoked at abrupt terminations with 
t•t•t as illustrated in Figure 4-22(b). These graphics are from the Recommendations for Fatigue 
Design of Welded Joints and Components (IIW, 2007) published by the IIW, and chaired by A. 
Hobbacher. 

Figure 4-23 shows that points on the finite element are selected at an appropriate distance from 
the weld toe for type “a” and type “b” details illustrated in Figure 4-22 and how the stress is 
linearly (or to the second power) extrapolated to the weld toe to obtain the structural stress.  

The table in Figure 4-23 also gives appropriate mesh sizes. Figure 4-23 is also extracted from the 
Recommendations for Fatigue Design of Welded Joints and Components (IIW, 2007). 

 

Figure 4-22 Modeling Guidance for Evaluation of Stress Concentrations by Extrapolation: 
(a) Weld Prototype for a Plate Welded Perpendicularly to another Plate; (b) as Discretized 
into FEA Brick Elements; (c) as Discretized into FEA Shell Elements; (d) with Increases in 

the Shell Elements to Account for Thickness at the Joints (adapted from IIW, 2007) 
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The validity of the locations of the extrapolation points is based on the authors’ affirmations that 
those locations give best fit to the baseline data. Other codes, such as the DNV, or the newly 
proposed AWS fatigue criteria, have alternate extrapolation criteria, indicating that for shell 
elements the weld at the toe be extrapolated to the mid plane of the shell. This is a more 
conservative approach, but it is accepted practice. 

 

 

Figure 4-23 Recommended Mesh Sizing and Extrapolation for Fine and Course Meshes to 
be used when Performing Analysis of Stress Concentration (adapted from IIW, 2007) 
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4.7. COMPOSITE BEHAVIOR WITH DECK SURFACING 

Research involving both laboratory tests and site measurements has clearly shown that wearing 
surfaces can reduce the displacements and stresses in the composite deck system of OSD 
bridges. This can be an important aspect of behavior, particularly for the accurate assessment of 
fatigue stresses at critical steel details. Experiments carried out by De Jong and Kolstein (2004), 
performed on OSDs with different surfacing materials at different temperatures, show that the 
stress range compared to an OSD without surfacing is reduced by a factor of 1 to 6. However, 
traditional bituminous or polymer surfacing materials are generally viscoelastic or plastic and 
provide rigidity at lower temperatures only. Furthermore, these materials have a tendency to 
crack or debond at highly stressed locations in service, which can reduce or eliminate the 
stiffening effect. (See Chapter 9 for more detailed information related to wearing surface 
material properties.) Such materials are not typically used as the basis for safe structural design 
in highway bridges. However, the potential for cost savings in design of the steel components 
can be significant since Fatigue limit states often control.  

Conventional methods of composite analysis can be applied to assess the stresses, with the use of 
an effective deck plate thickness calculated based on the modular ratio between steel and the 
surfacing material, n = Esteel / Ews. This ratio should be calculated with consideration of 
variability in the modulus of the surface material as a result of service temperature range and 
loading velocity. Consideration must also be given to the influence of the shear “slip” that occurs 
at the soft bonding layer. If no relevant data are available, refined analysis methods, as shown in 
Seim and Ingham (2004), or experimental testing may be required to accurately assess the 
composite stiffness developed by the wearing surface. See Chapter 9 for additional information 
on wearing surfaces. 

4.8. STABILITY 

Since the orthotropic panel is often integral with the primary bridge superstructure, the stability 
of the panel must be evaluated to ensure that buckling does not degrade the overall strength of 
the bridge when subject to axial and/or flexural demands. This is especially true when the OSD 
is part of a bridge superstructure primarily intended to resist global compressive loads, such as in 
cable-stayed and continuous box girder bridges. In flanges of box girders, global flexural 
demands on the bridge superstructure can result in nearly pure axial compressive stress on the 
flange plate components. For the case of global plus local demands, the rib may be subject to 
varying stress gradients with possible shear interaction. The potential stability-related limit states 
that must be evaluated in the orthotropic plate include:  

1. Local buckling of the deck plate between ribs  
2. Local buckling of the rib wall and  
3. Buckling of the orthotropic panel between FBs.  

Testing has indicated that failure of the rib in a stiffened panel is critical because it can produce a 
sudden collapse of the entire panel (Grondin et al., 1998). 

For simplified evaluation of local plate stability, the accepted practice in the United States is to 
limit the width-to-thickness ratio (b/t) to a value that prevents local buckling. When these limits 
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are exceeded, the local buckling causes a loss of stiffness and redistribution of stress and portions 
of the width become ineffective (SSRC 1998). The nominal critical buckling stress is reduced by 
an empirical reduction factor to account for this post-buckling behavior. This effective width 
concept has been used in design specification for many years (AISI, 2001) (AISC, 2005).  

Stability can also be evaluated by more rigorous methods, including FEA. There are two 
common strategies for conducting a buckling analysis using FEA:  

1. Eigen value buckling analysis 
2. General non-linear incremental collapse analysis that traces the entire equilibrium path to the 

critical load and beyond.  

The Eigen value buckling analysis is more attractive in that it requires substantially less 
computational effort, since it only needs to employ an Eigen value extraction routine on the 
global stiffness matrix, rather than conduct matrix inversion many times. This type of analysis is 
relatively simple to execute with most commercially-available software codes. However, this 
solution strategy is limited to problems where the precollapse displacements are relatively small 
and any changes in material properties do not significantly violate the assumption of linearity. 
This is often referred to as “elastic,” “bifurcation,” or “column type” buckling. This analysis also 
neglects any residual stresses and imperfections that exist, resulting in an overestimation of the 
true buckling load. This error can be small for plates with relatively high slenderness, but 
becomes more pronounced as the slenderness is reduced and buckling is coupled with inelastic 
behavior. The general non-linear incremental collapse analysis is more robust in that full 
consideration of residual stresses and imperfections can be considered. However, this demands a 
higher level of understanding in the FEA method by the practitioner in terms of definition of 
nonlinear elements, mesh imperfections, initial stresses, and incremental solution controls. No 
matter what solution technique is employed, the finite element model must always contain 
sufficiently refined mesh to describe the buckled configuration of the structure. 

4.8.1.Local Buckling 

Local buckling can occur in orthotropic plates in the deck plate between the connecting points to 
the ribs and in the rib walls, depending on the slenderness of each component, either a/td, e/td, or 
h/tr (see Figure 4-24). This limit state has been observed both numerically and experimentally 
(Chou et al 2006) (Grondin, et al 2002). The problem of local buckling in OSDs was initially 
addressed in the Design Manual for Orthotropic Steel Plate Deck Bridges (AISC, 1963). The 
method proposed was based on elastic stability analysis of simple plate elements with varying 
loads and boundary conditions. The consideration of inelasticity was approximately accounted 
for by use of the stiffness reduction factor (τ) applied to the elastic solution. Post buckling 
behavior was not considered. 

More recently, Yarnold et al (2007) conducted analytical parametric studies on the local buckling 
behavior of trapezoidal ribs in OSDs. Their studies recognized that typically the rib wall is the 
most slender element, and chose to investigate this element for both pure axial compression and 
combined axial plus bending. Their numerical analyses neglected imperfections and residual 
stresses, but the adequacy of this simplifying assumption for the problem at hand was confirmed 
by comparison of the results against physical testing. The work of Yarnold et al. (2007) 
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demonstrated clearly that local buckling will reduce the strength of the panel as a function of 
plate slenderness, and there exists a limiting b/t ratio at which the full yielding capacity of the 
panel can be achieved.  

 

Figure 4-24 Deck Panel with Trapezoidal Ribs Showing the Effective Panel Section for 
Consideration of Local Buckling 

The recommended method for quantification of strength reduction resulting from local buckling 
is the method as given by Specification for Structural Steel Buildings (AISC, 2005)for slender 
stiffened elements, which is based on the effective width approach and consideration of post 
buckling behavior (AISC, 2005). The method provides for simple calculation of the reduced 
critical stress by use of the slender element reduction factor (Q). This method is based on tests 
results from (Winter, 1947) and is also the basis of the North American Specification for the 
Design of Cold-Formed Steel Structural Members (AISI, 2001). The deck plate and the rib walls 
are considered “stiffened” elements since both longitudinal edges have support. When the width 
to thickness ratio of the deck plate between ribs or the rib wall exceeds the limit of: 
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Then the reduced effective width of the plate element is taken as: 
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where: 

be  = reduced effective width of the plate 
t  = thickness of the plate element 
b  = width of the plate element 
E = modulus of elasticity 
f  = applied stress (may be conservatively taken as Fy) 

If all elements in the cross-section have width to thickness ratios less than Equation (4-7), then 
local buckling will not reduce the compressive strength of the panel. If multiple elements exceed 
Equation (4-7), then the effective width must be calculated for each individually. It is noted that 
this equation is conservatively based on stiffened plates, where the sides provide little rotational 
restraint to one another as is the case in hollow box sections (AISC, 2005). The applicability of 
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equation (4-8) to the OSD is based on the assumption that the residual stresses and imperfections 
are of similar magnitude to those found in rolled or welded structural shapes.  

Once the effective width for each slender plate element in the cross-section is determined, then 
the reduction factor for slender elements (Q) is determined by: 

A
A

Q eff=    (4-9) 

Where: 

Aeff  = summation of the effective areas of the cross-section based on the reduced  
effective widths  

A  =  total cross-sectional area 
 

This slender element reduction factor is then incorporated in the calculation of the panel buckling 
strength, as described in the next section. This method allows for direct calculation of the panel 
buckling strength accounting for local buckling reduction.  

It is noted that the Q Method as proposed will produce reasonable results for determining 
buckling strength of panels with rib wall slenderness, as found in most typical orthotropic cross-
sections. However, for wall slenderness exceeding a value of approximately 60, then this method 
produces unconservative results and more rigorous analysis is required. This is due to the fact 
that local buckling of rib walls degrades the overall buckling strength of the panel to a larger 
degree than a typical rolled steel shape.  

The methods for evaluating local buckling were presented here for closed ribs. Open ribs are not 
presented since the evaluation is similar, uses the same theory, and is less complex overall. 

4.8.2.Panel Buckling 

Buckling behavior of stiffened plate panels is a complicated problem due to the two-way 
orthogonal stiffening behavior and partially restrained boundary supports on four sides of the 
panel. A summary of relevant historical research on this subject is provided in the text by 
Troitsky (1977) and in (SSRC, 1998). Generally, the intermediate FBs and bulkheads in 
orthotropic plate structures are stiff enough to be considered as a pinned boundary support for 
the containment of buckling within the panel. Similar to stiffened plate elements, reserve post-
buckling strength in the panel exists beyond the point of initial buckling and can be quantified by 
use of the local effective width approach.   

As proposed by Horne and Narayanan (1977), a simplified approach to estimate the buckling 
strength of the stiffened panel is to analyze the panel as a series of isolated column struts 
comprised of a stiffener and the associated effective width of plating (see Figure 4-25).  Basic 
column theory can then be employed. This approach conservatively neglects the bending and 
membrane stiffness of the panel in the transverse direction and the torsional stiffness of the 
closed rib sections. 
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Figure 4-25 Deck Panel with Trapezoidal Ribs showing Axial Strut for Simplified Analysis 
of Buckling Strength in Orthotropic Panel.   

Applying the strength equations of Specification for Structural Steel Buildings (AISC, 2005) 
with consideration of local buckling reduction from the slender elements, the critical buckling 
stress is determined as follows: 
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where: 

Fe  = is the elastic critical buckling stress = 22 )//( rKLEπ  
Q  = is the slender element local buckling reduction factor 
K  = is the effective length factor 
L  = is the span length of the panel in the direction of compressive stress (between 

FBs) 
r  = is the radius of gyration of the strut 

 
For more accurate analysis of the panel buckling strength with full consideration of the 
orthogonal stiffening behavior, the FEA method is recommended. An isolated panel with 
idealized boundary conditions can be considered for simplicity, or multiple spans that account 
for the continuity can be analyzed for improved accuracy. It is noted that panel buckling in OSDs 
has been determined analytically to be sensitive to the residual stresses (Chou et al 2006). 
Therefore, the FEA modeling strategy should employ nonlinear incremental collapse analysis 
with modeling of the initial stresses and consideration of inelastic material behavior, in situations 
when yielding is expected prior to buckling (i.e. when the panel slenderness is relatively low). 
Alternatively, inelastic behavior can be approximated by modification of elastic buckling 
analysis results with a stiffness reduction factor (i.e. use of a “tangent” modulus) in the model or 
by decreasing the resistance factor. 
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4.8.3.Residual Stresses 

Residual stresses that exist in orthotropic steel panels are created primarily by the cooling of the 
longitudinal RD weld. The maximum tensile residual stress at a weld or in a narrow zone 
adjacent to a flame cut edge is equal to or greater than the yield strength of the plate (Bjorhovde 
et al., 1972). For consideration of the panel stability, it is the longitudinal residual stresses in the 
deck plate and rib that are of primary concern. Limited data exists for the magnitude and 
distribution of these stresses; however, a distribution similar to that shown in Figure 4-26 has 
been found by Grondin et al. (2002). It is noted that the magnitude of residual stresses in 
orthotropic panels (Fy max, 0.25Fy min) is near that observed in typical hot rolled or welded 
columns (Bjorhovde et al., 1972). However, the distribution is quite different. In the case of the 
orthotropic panel, stiffness of the cross-section can be lost quickly once yielding is initiated, 
depending on the plastic material hardening that is provided by the steel. Thus, for stocky panels, 
equation (4-10) may be unconservative, as was observed in the research by (Chou et al., 2006). 
Until future research more accurately quantifies the inelastic buckling strength of an orthotropic 
panel in the full domain, rigorous incremental nonlinear FEA of the panel buckling would 
provide a more accurate result in this case. 

 

Figure 4-26 Approximate Residual Stress Pattern in Orthotropic Panel in the Deck and Rib 
showing Locations of Tension and Compression Fields.   

4.8.4.Imperfections 

The behavior of an out-of-straight or warped panel changes the stability problem from one of 
bifurcation to one of plate bending from eccentricity of the axial load. Imperfect geometry will 
reduce the buckling strength of the panel, although it has been found to be much less influential 
than the presence of residual stresses (Chou et al., 2006). The imperfection that will exist in the 
finished panel is related directly to fabrication technique and the quality control measures that 
are employed during construction (see Chapter 10). The analysis assumptions must be consistent 
with the fabrication tolerance allowed in construction. For development of the AISC 
Specification equations, a value of L/1000 was utilized, based on the upper limit of what is 
acceptable for actual delivery of structural members (SSRC 1998). This magnitude of 
imperfection is also applicable to bridge construction in general, which supports the applicability 
of the AISC equations to orthotropic panels. For modeling of imperfections in nonlinear FEA, a 
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half-sinusoidal shape with maximum amplitude of L/1000 at the center is considered 
conservative and reasonable, where L is the span length in the direction of the compressive 
stress. 

4.8.5.Second Order Effects 

Orthotropic panels, when used as decks to support direct traffic loading, are typically subjected 
to combined bending plus axial compression. Local wheel loads cause out-of-plane deflection of 
the panel, which results in second-order moments from eccentricity of the axial load. The 
magnitude of the live load deflection is typically limited to increase the longevity of the wearing 
surface. However, as the compressive load approaches the elastic critical buckling stress, the 
second order P-δ effect can become significant and should not be neglected. This can be assessed 
directly by FEA that employs geometric nonlinearity; where loads are applied on the deformed 
structure. Note that proper discretization of each structural element is necessary to capture P-δ 
effects. Alternatively, the Specification for Structural Steel Buildings (AISC, 2005) method of 
“Second Order Analysis by Amplified First Order Analysis” may be employed. This method 
allows for simple estimation of the total moment in the panel as follows: 
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where, 

Mu  = is the maximum factored moment including second order effects, 
Mo  = is the maximum factored moment based on first order analysis with the 

transverse loading, 
B1  = is an amplification factor to account for additional moment caused by lateral 

displacements in the panel (P-δ), 
fu  = factored pure axial stress from compressive loading only, 
 

and Cm is the equivalent moment factor calculated as follows: 
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where δo is the maximum deflection due to transverse loading 

 
Alternatively, Cm = 1.0 can be used as a simple conservative approximation for all cases 
involving transversely loaded panels. 
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5.  DESIGN  

This chapter outlines the approach to design of orthotropic steel bridge superstructures by 
evaluation of applicable limit states using the Load and Resistance Factor Design (LRFD) 
methodology. The discussions related to design specifications, including loads and factors, are 
put into context with the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD). For 
determination of nominal resistance, references to other sources such as American Welding 
Society (AWS), the European Committee for Standardization (ECS), and other internationally 
published literature are shown as applicable.   

5.1. GENERAL DESIGN APPROACH 

Orthotropic steel panels are employed in a variety of different ways. One form is as an 
independent (floating) deck system where the design need only consider local effects as the deck 
spans between points of intermediate support from the global superstructure (such as a truss or 
cable support).  A second form is a panel that also serves as an integral flange or web to a built-
up steel plate or box girder where the design must consider both local effects as well as global 
demands imposed from the superstructure.  A third form is as an integral deck rigidly attached to 
a supporting global bridge superstructure system where the deck is used for redecking an existing 
bridge with rigid attachment.  In this last case, the demands on the panel from global response of 
the existing structure need to be carefully considered to assess all the complex interactions.  

The criteria provided in this chapter are primarily applicable to the case of orthotropic panel 
functioning as a bridge deck subjected to direct wheel loads. By comparison, when the 
orthotropic panel is used for a bottom flange or web of a box girder, the design is greatly 
simplified because no traffic loading is applied directly to the panel.  In this case, the panel is 
primarily subjected to simple in–plane axial loading.  

Regardless of the design condition, the individual components of the panel such as the deck 
plate, ribs, FBs and their connections need to be evaluated for all applicable limit states. 

5.1.1. Design Level 

For OSDs to become more accepted as a common bridge deck solution, design verification 
requires a new approach. Since many of the controlling aspects of OSD panel design are local 
rather than global demands, a well-designed and detailed panel has the potential to become a 
standardized modular component that can be used in multiple future applications that are 
sufficiently similar. If such a deck panel can be developed and verified, the required effort for 
design would be much less for these types of bridges. In contrast, those bridges that have unique 
characteristic will continue to require a more rigorous analysis. Thus, the Design Level is 
determined depending on the application and the test data available to the designer. The Levels 
of design are summarized as follows (see Section 5.6 for more detail on each level). 

• Level 1 Design - Level 1 Design is based on little or no structural analysis, but is 
accomplished by selection of details that are verified to have adequate resistance by 
experimental testing (new or previous).  When appropriate laboratory tests have been 
conducted for previous projects or on specimens similar in design and details to those 
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proposed for a new project, the previous tests may be used as the basis for the design on the 
new project.  All details must provide a measure of reliability consistent with the AASHTO 
LRFD Specifications. Previously verified Level 1 designs may be used as the basis for design 
on new projects without additional testing, subject to approval by the owner. 

• Level 2 Design - Level 2 Design is based on analysis of certain panel details that can be 
evaluated with sufficient accuracy by simplified 1-D or 2-D analysis techniques. Calculations 
consider only nominal stresses, and not local concentrations. Acceptable techniques include 
transverse strip models, the Pelikan/Esslinger Method, the Vierendeel Model (as described in 
Chapter 4), or other methods that are properly calibrated to experimental test data. This 
design Level can also include incremental improvement of previously tested details by 
comparative analysis. Not all orthotropic panel details can be designed by Level 2.  

• Level 3 Design - Level 3 Design is based on refined 3-D analysis of the panel to quantify the 
stresses to the most accurate extent reasonably expected (from a qualified design engineer 
experience in refined analysis) for all components and connections. Calculations consider 
local stress concentrations at fatigue-prone details. This may require a detailed sub-model of 
the panel within a global model of the bridge superstructure system.  

If no previous test data is available for a panel, new testing (Level 1) or refined analysis (Level 
3) is required unless it can be demonstrated that the local distortional mechanisms (FB distortion 
and rib distortion) will not lead to fatigue cracking. Strength, Service, and Constructability 
generally only require a Level 2 design. For design of panels for bridge redecking applications, 
design Level 3 should always be used.  

Standardized panel details for use in Level 1 design have been developed and are promulgated in 
specifications worldwide, such as the Eurocode (ECS 1992) and the Japanese Bridge 
Specifications (JRA 2002). However, additional standard panels have not yet been developed 
and tested in the United States at the time of this Manual’s publication. Recent domestic full-
scale prototype tests (Connor 2004, Tsakopoulos 1999) were special designs conducted for 
redecking of existing bridges, and they are not considered optimum solutions for standardization. 
Future research and testing should provide additional data that can be used in Level 1 design. For 
implementation, owners should consider adoption of a verified design and incorporation into 
their standards. 

Appendix C demonstrates the application of Level 1 Design of an OSD based on available 
experimental test data from a previous project. The basis of design is the prototype OSD for 
redecking of the Bronx-Whitestone Bridge, which was tested at Lehigh’s ATLSS Research 
Center in 2002 (Tsakopoulos, 2002). This full-scale laboratory test simulated 4.1M cycles of 
2.25 times the AASHTO HS20 Fatigue Truck, plus additional 2M cycles of three times the 
HS20, producing effectively 239M cycles of the fatigue loading. Fatigue cracks were not found 
in any of the primary connections, which demonstrates very good fatigue resistance and verifies 
the design performance for the given conditions.  
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5.1.2.Design Life 

OSDs are often handicapped by their own expected success. While other competing deck 
systems are considered to be disposable (i.e. expected to only last 30-50 years), the OSD is often 
required to provide extended service life. In the past they have often been rejected because of 
uncertainties about potential fatigue cracking and maintenance. As the technology has improved 
and more experience gained, fatigue problems have been greatly reduced or eliminated, and have 
decreasingly become a concern. As such, OSDs are economically viable and highly competitive 
on a life cycle cost basis, despite their higher initial costs. Life cycle analysis does require that 
certain assumptions be made about service life. Designs made according to these provisions can 
be expected to perform very well and meet the design life as per AASHTO LRFD. There is no 
reason to expect that an OSD should not last as long as the other more common steel bridge 
members subjected to the same heavy traffic and environmental conditions. 

5.2. GENERAL DESIGN APPROACH 

The applicable limit states for the design of orthotropic panels include Strength, Service, Fatigue, 
and Constructability. All limit states need to be considered for complete design, but, as 
previously stated, it is generally the Fatigue limit state that will control the majority of design 
details. Note that extreme-event limit states are beyond the scope of this manual and are not 
covered. 

5.2.1.  Strength Limit State 

Strength limit states maintain the load-carrying capacity governed by geometry and material 
properties. Thus, yield strength and/or geometric properties, such as loss of stability, must be 
considered in the design of orthotropic panels. Global and/or local geometry may govern stability 
considerations.  

Testing has shown that OSD panels can have tremendous reserve strength for lateral loading 
beyond the yield strength, due to membrane stiffening. This reserve, however, is dependent upon 
the boundary support conditions. For simplicity, the approach to Strength design should 
conservatively limit stresses to the specified minimum yield strength or critical buckling stress.  

Strength design must consider the following demands: rib flexure and shear, FB flexure and 
shear, and axial compression. The rib, including the effective portion of deck plate, must be 
evaluated for flexural and shear strength for its span between the FBs. The FB, including the 
effective portion of the deck plate, must be evaluated for flexural and shear strength for its span 
between primary girders or webs.  The reduction in FB cross-section due to rib cut-outs must be 
considered by checking flexure and shear where the portion of web is removed. When the panel 
is part of a primary girder flange, the panel must be evaluated for in-plane compressive strength 
based on stability considerations.  

The Strength limit states that include live load and dead load as the primary loads in the 
combinations govern the design of orthotropic panels in most cases. In AASHTO LRFD, these 
are the Strength I and Strength II limit states. These Strength limit states must be satisfied for 
both buckling and yielding. The Strength I load combination is applied in conjunction with the 
HL-93 notional live-load model representing random traffic, while the Strength II load 
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combination is applied with owner-specified permit loads (for example, the Caltrans P-15 permit 
load model). 

Often, a bridge design specification will include Strength limit states for special situations. The 
AASHTO LRFD includes the Strength IV limit state to allow the specifications to be applied to 
long-span bridges where the dead load is predominant over the live load. This limit state governs 
where the dead-load effect is seven or more times the live-load effect. As such, it will likely only 
govern the design of OSDs when they are made integral with a long-span bridge superstructure. 

5.2.2.  Service Limit State 

Service limit states exist to provide checks for maintaining the service life of the bridge. These 
limit states should also be considered as means to minimize maintenance costs and traffic 
disruptions for repairs. Additionally, these limit states could include elastic and plastic 
deformations and other forms of service–induced deterioration, such as debonding or cracking of 
the wearing surface of an OSD. 

The basic Service limit state applies load factors equal to 1.0 to each significant component of 
load. In the AASHTO LRFD, this is the Service I limit state. For OSDs, the Service I limit state 
must be satisfied for overall deflection limits for the deck plate (span/300) and the ribs 
(span/1000) and relative deflection of adjacent ribs (2 mm [0.10 inches]). These deflection limits 
are intended to prevent premature deterioration of the wearing surface.  

Another applicable Service limit state is the Service II limit state for the design of bolted 
connections against slip in the overload scenario. This should be considered for the design of rib 
and FB splices. The remaining Service limit states III and IV are for tensile stresses in 
prestressed concrete sections under vehicular live loads, and tensile stresses in prestressed 
concrete substructures under wind loads, respectively. Thus, neither of these additional Service 
limit states is applicable to OSDs. 

5.2.3.  Fatigue Limit State 

Two types of designs are possible within the context of the AASHTO LRFD Specifications for 
fatigue: infinite-life and finite-life design. As such he AASHTO LRFD introduces two Fatigue 
limit states: Fatigue I for infinite-life design and Fatigue II for finite-life design. Because OSDs 
are governed by wheel loads, they experience millions of repetitive cycles of wheel loads and 
thus will most often be required to be designed for Fatigue I. By comparison, other code-writing 
bodies acknowledge other fatigue life prediction concepts instead of the infinite life concept used 
in the AASHTO LRFD. For example, Eurocode (ECS, 1992) specifies fatigue-resistance curves 
with merely a decreased slope below some threshold value of stress range, instead of AASHTO’s 
horizontal threshold (the constant amplitude fatigue limit [CAFL]) for variable amplitude 
loading. Other specifications use the infinite life concept for constant amplitude fatigue, while 
relying on a bi-linear fatigue life curve for variable amplitude curves for certain life estimates. 
Fatigue II finite life design may produce more cost-effective proportions when the traffic volume 
is not excessively high. 
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5.2.4.  Constructability 

The strength and stability of the orthotropic panel and the integrity of the wearing surface must 
be maintained during all stages of construction, including handling, storage, shipping, and 
erection. Very often, orthotropic panels are shipped by ocean-going vessels, which may cause the 
controlling loading scenario for the panel. There have been reports of wearing surface failure due 
to stresses applied during erection of pre-topped panels. 

5.3. LOAD FACTORS AND COMBINATIONS 

State-of-the-art bridge design specifications are reliability-based with a partial-factor format that 
mimics deterministic design methodology. The design equation for such specifications can be 
generalized as: 

γ φ≤∑ i
i

Q R
 (5-1)

 

 
Where, 

iQ   = force effect, 

iγ   = appropriate load factor, 
R   = nominal resistance,  
φ   = appropriate resistance factor. 
 

In the partial-factor method of reliability-based design, load and resistance factors are specified 
for application to the load and resistance sides of the design equations, respectively, to achieve 
desired levels of reliability or safety. These factors are specific to the nominal loads and 
resistances specified in a particular design specification and must be applied together. The load 
factors from one specification are not necessarily appropriate for application with the resistance 
factors, or the nominal loads and resistances of another design specification. 

The Strength limit states of AASHTO LRFD are calibrated to achieve a target reliability index of 
3.5, which results in a probability of failure just above to the average of the past specifications 
(Nowak, 1999). 

In the case of OSD design, the nominal force effects are typically stresses or deformations, with 
the nominal resistances of limiting stresses (for example, yield strengths or buckling strengths) or 
limiting deformations, respectively. 

Sets of load factors, called load combinations, are calibrated to achieve the target reliability 
under various combinations of loads (Nowak, 1999) (Kulicki et al, 2007). The magnitudes of the 
load factors in a combination reflect the uncertainty of the loads and the probability of the 
simultaneous occurrence of the loads represented in the combination.  

The load combinations of typical design specifications are categorized as Strength limit states or 
Service (or serviceability) limit states. Strength limit states are those intended to maintain load-
carrying capacity. Service limit states are those intended to maintain service life. 
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The applicability of the live-load load factors for the Strength I and Strength II limit states, 1.75 
and 1.35 respectively, to the design of OSDs governed by wheel loads is an extension of the 
original calibration of AASHTO LRFD. These load factors were not derived specifically for 
OSDs, but the derivation did consider other bridge systems and components governed by wheel 
loads. These strength load factors are likely somewhat conservative due to lower uncertainty in 
axle loads as compared to gross vehicle weight (GVW). However, the nominal design axle loads 
may be somewhat low, as described below, and may offset some additional safety margin.  

The appropriateness of the resistance factors of AASHTO LRFD for OSDs has not been 
rigorously established through research. These resistance factors were derived by considering the 
uncertainty of force effects in girders subject to truck loads. It is noted that the magnitude of 
residual stresses and the tolerances for fabrication are consistent with other more conventional 
fabricated structural steel members. Until future research more accurately quantifies the 
reliability index provided for deck systems, the current AASHTO LRFD resistance factors are 
considered acceptable to achieve safety in the design of OSDs.  

The load factors for fatigue are dependent upon the nominal fatigue load. Using the AASHTO 
LRFD provisions for fatigue design of OSD components and connections, the Fatigue load 
factors are taken as γI = 1.50 and γII = 0.75. There is an exception to this for connections to the 
deck plate and details around the FB cut-out where the Fatigue I load factor should be increased 
to 2.25.  The increased Fatigue I load factor is based on stress range spectra monitoring on both 
the Williamsburg Bridge (Connor and Fisher, 2001) and the Bronx Whitestone Bridge (Hodgson 
and Bowman, 2008), which indicate that the standard Fatigue I load factor, which was developed 
for girders, FBs, truss members and other “global” components is unconservative for the design 
of certain OSD components. These studies indicate that the ratio of maximum stress range to 
effective stress range is increased as compared to standard bridge girders. This is attributed to a 
number of factors such as occasional heavy wheels and reduced local load distribution that 
occurs in deck elements, as opposed to a main girder for example. The influence of the enhanced 
load distribution, which is not accounted for in the AASHTO distribution factors is apparent as 
this ratio is in fact more consistent with the original findings of NCHRP Report 299 (Moses 
et.al., 1987).  This is increase is accomplished simply by using an additional modifier of 1.5 for 
the appropriate orthotropic details.  Thus, 1.5 x 1.5 = 2.25 for Fatigue I.  These stress-range load 
factors limit the stress ranges exceeding the constant-amplitude threshold to a rate of 1 in 10,000. 
(This rate is comparable to that observed for typical fatigue-sensitive details on girders.) 

5.4. PERMANENT LOADS 

The permanent loads to be considered in the design and evaluation of OSD are the dead loads of 
the steel deck and its wearing surface. The AASHTO LRFD includes a separate load factor for 
wearing surfaces (termed DW) of 1.50, which is greater than the load factor for other dead loads 
(termed DC) of 1.25. This increased load factor acknowledges the uncertainty of future asphalt 
wearing surfaces and can be reduced at the discretion of the designer, considering the well-
controlled thicknesses of the wearing surfaces on OSDs. 
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5.5. LIVE LOADS 

Live load demands on the OSD can include both local and global effects. Global effects result 
from the OSD participating as an integral part of the bridge superstructure. Local effects result 
from the application of the wheel loads directly on the panel.  Both effects need to be 
superimposed for certain design conditions to calculate the total force effect in the deck 
components and connections. Different live load components govern the global and local effects. 
It is most often the local demands (due to cyclic stress ranges from wheel loads), however, that 
control the OSD design details. Thus, the complete HL-93 notional live-load model of AASHTO 
LRFD should be used to determine total force effects. 

5.5.1.  Design Truck or Tandem Load 

5.5.1.1.Application 

As demonstrated in Section 4.5, local effects in OSDs are governed by wheel loads, and the 
maximum response can be sensitive to how the wheel loads are applied. The simplified approach 
of using concentrated wheel loads should only be considered for Level 2 design, although it may 
result in more conservative designs. For Level 3, the wheel load must be distributed over the tire 
contract area yielding a uniformly distributed pressure to be applied to the OSD contact surface. 
This pressure may be subsequently distributed downward through the wearing surface and deck 
plate to the mid-plane of the deck plate, assuming a 45° angle of distribution. 

5.5.1.2. Orthotropic Steel Deck Refined Design Truck 

The magnitude of wheel loads specified in AASHTO LRFD is 71 kN (16 kips) for the HL-93 
design truck and 55.5 kN (12.5 kips) for the HL-93 design tandem. The 142 kN (32 kip) axles 
(consisting of two 71 kN [16 kip] wheels) of the three-axle HL-93 truck, date back to the H20 
load from the 1930s and  represent a design expedience developed for components other than 
OSDs. The 142 kN (32 kip) axles in the design truck represent two closely spaced tandem axles 
of greater weight than 71 kN (16 kips) (of a five-axle tractor trailer truck). A history of live-load 
model development is included in Kulicki and Mertz (2006). More recently, Nowak (2008) 
found by extrapolation procedure on weigh-in-motion (WIM) data from 13 bridges in Michigan 
that the 75-year mean maximum axle weight is 196 kN (44 kips), based on the same procedure 
used to develop AASHTO LRFD live loads. This value is somewhat larger than the current HL-
93 truck in AASHTO LRFD; however, the load factor is deemed to be sufficiently conservative 
when applied to axle loads, as described previously.  

For OSDs, it must be recognized that the AASHTO LRFD-specified 145 kN (32 kip) truck axle 
actually represents a tandem consisting of two 71 kN (16 kip) axles spaced at 1220mm (4ft.).  
Thus, each wheel of the 71 kN (16 kip) axle is properly modeled in more detail as two closely 
spaced 45 kN (8 kip) wheels, 1220mm (4ft.) apart to accurately reflect an actual Class 9 tractor-
trailer with tandem rear axles. Further, these wheels are distributed over the specified contact 
area of 510 mm (20 inches) wide by 250 mm (10 inches) long for rear wheels and 250 mm (10 
inches) square for front wheels, which approximates actual pressures applied from a dual tire 
unit (Kulicki and Mertz, 2006) (Nowak and Eamon, 2008).  
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The refined HL-93 Design Truck is shown in Figure 5-1. This loading should be positioned both 
longitudinally and transversely on the bridge deck ignoring the striped lanes to create the worst 
stress, stress range, or deflection, as applicable.  Note that the smaller 255mm x 255mm (10 in. x 
10 in.) front wheels can be the controlling load for fatigue design of some OSD details since the 
patch width will often fit within the dimension of the rib wall spacing. 

 

Figure 5-1 Refined Design Truck Footprint for Level 3 Design of Orthotropic Decks with 
Tandem Rear Axles and Individual Wheel Loading Patches 

5.5.1.3. Fatigue Application 

The fatigue-load specification includes configuration, magnitude, movement, and frequency. The 
configuration and magnitude of the fatigue wheel load is identical to the one shown in Figure 5-1 
and should be modeled accordingly. For fatigue design, the live load analysis must consider 
moving loads to quantify the full range of stress at details from an individual truck passage since 
many details are subject to stress reversal when the loading is placed in adjacent spans (or even 
adjacent ribs). This can be done by considering a straight travel path for the design truck at a set 
transverse position on the bridge deck. This approach has the effect of neglecting larger stress 
ranges that may result from the passage of two trucks in series or side-by-side in different 
transverse positions, but these events are covered by design with the fatigue load factors given 
above.  

The frequency of loading is critical for finite life design in OSDs.  The Average Daily Truck 
Traffic (ADTT) and cycles per truck passage (n) both influence the total number of cycles for 
design.  For components and connections of the OSD subjected to direct wheel loads, the number 
of cycles for design is governed by the number of axles expected to cross the bridge.  
Conversely, it is the number of truck crossings that equate to fatigue cycles for the main load-
carrying members.  For the refined tandem-axle truck, this results in 5 cycles per truck passage. 
However, the work by Connor (2002) found that other components such as the rib and FB 
typically experience only one primary stress cycle per truck passage. Thus, for design of all 
welded connections to the deck plate use n = 5.0 and for all others use n = 1.0. Additionally, 
since axle (and wheel) loads are variable for design trucks, it is a matter of variable stress range 
loading. The force effect (∆f) can be conservatively taken as the worst case from the five wheels, 
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or by application of Miner’s Rule to determine the effective stress range from the group of 
wheels. 

5.5.2.  Multiple Presence Factors (MPF) 

Multiple-presence factors (MPFs) account for the reduced probability associated with pairs or 
multiple trucks being as heavy as individual trucks for evaluation of Strength limit states. The 
multiple-presence factors contained in AASHTO LRFD table 3.6.1.1.2-1 were developed from 
the observation of the effects of gross-vehicle weights (GVWs) of trucks. Although truck 
weights do not govern the design of OSDs, these values are appropriate for use with the wheel 
loads for OSD design. The single-lane MPF of 1.2 accounts for particularly heavy wheel loads. 

5.5.3.  Dynamic Load Allowance (IM) 

Bridges are typically analyzed for static live load with the resultant static stresses amplified by 
dynamic load allowances to estimate dynamic stresses. The dynamic load allowances (IM) of 
AASHTO LRFD, 0.33 for strength and service and 0.15 for fatigue, were originally derived by 
examining the responses of bridge components to vehicle loads and assuming application to the 
HL-93 notional live-load model. (If applied to vehicles alone instead of the superposition of 
vehicles and lane load as for HL-93, the value for strength and service could be reduced to 0.25.)  
The specified values of IM consider surface roughness to be predominant and beyond 
anticipation by the designer. Further, they assume the potential surface roughness associated with 
potholes in typical reinforced concrete decks.  

The dynamic load allowances specified in AASHTO LRFD may be reduced at the discretion of 
the engineer for OSDs considering the well-controlled nature of the wearing surfaces proposed in 
this Manual. Special consideration for the need for higher impact factors in the regions of 
expansion joints or other details that may result in amplified loads may be considered by the 
engineer. 

5.5.4.  Site Specific Live Load Models 

At the discretion of the engineer, a site-specific live load model may be developed to achieve a 
more cost-effective design or more accurate structural assessment. Researchers have found that 
analysis of local or regional traffic conditions can justify changes (either increases or decreases) 
to the loads and load factors from the standard values found in AASHTO LRFD (Pelphrey and 
Higgins, 2006). This approach may be particularly applicable to the design of OSDs due to the 
relative lack of research on reliability and their sensitivity to fatigue design. Development of site-
specific loading requires understanding of structural reliability theory and knowledge about some 
of the basic criteria used for calibration of AASHTO LRFD. Any site specific load modeling and 
calibration must provide a safety index that is consistent with current AASHTO philosophy. This 
may involve statistical analysis of data collected at the site or by use of existing data that is 
considered representative of the traffic loads anticipated on the bridge.  

A good source for axle load spectra data is available in the Mechanistic Empirical Pavement 
Design Guide (NCHRP, 2003). Since pavement design is controlled by axle loads and not GVW 
similar to OSDs, this data is considered the most relevant for development of a site-specific load 
model. The NCHRP Guide provides a method for determining live loads for pavement design, 
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which is based on WIM data collected from 134 sites across the country and from varying 
roadway functional classes. The method allows for varying levels of input for load development, 
depending on the data available to the designer. The more data available about the traffic 
conditions at the project site, the more accurate (and often less conservative) the load model can 
be developed. The axle load data summarized in the NCHRP Guide may be used to develop a 
site-specific “effective fatigue truck” for fatigue design and/or the maximum design truck for 
strength design. 

5.6. ANALYSIS 

Traditionally, the analysis approach for the design of highway bridges is one of component 
analysis and not system analysis. In a component design approach, the girders, FBs, stringers, 
and the deck are designed independently of one another. The approach is predicated on the 
principle that the assumed behavior of the individual component is fully compatible with the 
actual behavior once placed in the complete system. In most situations, these assumptions lead to 
conservative and acceptable designs with respect to global behavior. Unfortunately, most fatigue 
problems in steel bridges are often the result of a lack of consideration for stresses produced by 
local or secondary behavior at connections. These local stress components almost always arise 
from the “real” three-dimensional behavior of the system that is not accounted for in component 
design.  

Experience has shown that component design of OSDs does not appear to be acceptable in all 
cases. Generally, the local stresses cannot be properly accounted for during a component design 
of the deck system. For example, the FB web plate of OSDs is subjected to a complex stress-
range cycle comprised of both in-plane and out-of-plane stress cycles. In-plane stresses are 
analogous to membrane stresses within the FB plate. Out-of-plane stresses are produced by the 
rotation of the rib where it passes through the FB. These rotations are the result of bending of the 
rib under moving loads. The proportions of in-plane and out-of-plane stresses adjacent to the cut-
out are dependent on the geometry of the cut-out and ribs, stiffness of the FB and ribs, and the 
type of internal bulkhead if used. The transverse position of the rib, i.e., toward the edge of the 
deck (external) or toward the middle of the deck (internal) also has a significant influence on the 
behavior adjacent to the cut-out.  

Since the complex interactions of the various components of the orthotropic bridge cannot be 
accurately quantified in a component design, simplified analytical models may not provide 
sufficient or accurate information at all fatigue-sensitive details. As a result, the current 
AASHTO nominal stress approach routinely and successfully used for fatigue design in highway 
bridges cannot always be used for all details in OSDs. In some cases, other more refined methods 
must be used to ensure an adequate design. Although commonly used in other industries, these 
methods are not well known to many bridge engineers in the United States.  

As such, the updated design approach for OSD bridges is based on the following: 

1. The current AASHTO nominal stress approach for fatigue design cannot be directly used to 
evaluate the Fatigue limit state at all critical details due to the complex stress field present.  
Hence, more refined fatigue evaluation techniques are required for many of the details;  
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2. Although previous experience is useful and important to consider in any design, adequate 
performance cannot be guaranteed by implementing simple detailing requirements.  This is 
due to two primary factors.  First, the lack of tested and established standard deck panel 
details makes it difficult to recommend a single “all-purpose” solution.  Second, research has 
shown that in cases where the deck is installed on an existing structure, there are often subtle, 
yet very influential factors that affect the actual stress response at a given detail which can’t 
be addressed without analytical modeling or testing.  In other words, it cannot be assumed 
that a detail that was successfully used on one bridge will perform similarly on another 
bridge. Also, publishing standard details in the governing national specifications would 
hinder future development of improved designs;  

3. Although the above are true, it is also recognized that refined analysis for new designs will 
add engineering cost and potentially limit use for routine span arrangements.  Hence, a 
standard OSD design, which includes all details, must be developed for use on “typical” 
applications in order for this system to be widely used; and  

4. Verification testing of every design adds unnecessary cost and has the potential to delay 
construction. 

Hence, design verification of OSDs requires a different approach than what is used for more 
common steel bridge members. Since many of the controlling aspects of OSD panel design are 
local rather than global demands, a well-designed and detailed panel has the potential to be 
reused in future applications and become a standardized modular component. Therefore, the 
required effort for design can vary depending on the application and available test data. As 
summarized previously in Section 5.1.1, these different levels of required effort for design or 
“Design Levels” are as follows: 

Level 1 

Level 1 is based on full-scale laboratory testing and may be completed without consideration of 
Levels 2 and 3. The test must appropriately represent or be a prototype for the design to be used 
for the structure. That is, all structural components and details must be verified as providing 
sufficient resistance to test loads. Test loading should be equivalent to the maximum truck load, 
and stress ranges at details should accurately simulate expected in-service demands and should 
have accurate boundary conditions. For finite fatigue life design, the resistance shall provide 97.5 
percent confidence of survival and the constant amplitude fatigue limit (CAFL) should be 
exceeded no more than one in 10,000 cycles (0.01 percent). A full-scale test should include a 
minimum of two rib-spans with three FBs. The number of ribs required will depend on multiple 
factors.  A minimum of five ribs is recommended but more may be required in order to resemble 
the crossbeam in terms of correct bending and shear.  All details must provide a measure of 
safety consistent with the AASHTO LRFD Specifications. Guidance on testing procedures is 
provided in Chapter 10.   

Additionally, it is allowed that Level 1 designs that have been previously verified by laboratory 
testing may be used as the basis for design on new projects without additional testing, subject to 
approval by the owner. It is anticipated and acceptable that if two structures have similar 
geometry and loading conditions and the same orthotropic detailing is to be used, additional 
testing is not required to reprove the adequacy of the repeated design.  However, analysis must 
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be performed to verify that the boundary conditions and loading conditions are equal and that 
distortional stresses will not be impacted by the new application.   

Level 2 

Level 2 is based on simplified 1-D or 2-D analysis of certain panel details for which there is little 
experimental data and acceptance of certain details that are similar to previous tested details as 
described in Level 1. Calculations need only consider nominal stresses and not address local 
stress concentrations. Level 2 Design is primarily intended to allow incremental improvement of 
previously tested details, as demonstrated by Level 1. It is a reasonable assumption that small 
variations in certain aspects of a bridge may affect the global forces affecting the OSD, yet will 
not greatly impact the locally-loaded, fatigue-prone details. Careful consideration must be used 
by the designer to ensure that any changes do not impact the previously verified details, that 
OSD fabrication techniques will be the same, and that the calculation of nominal stresses is 
sufficient to ensure the durability of the bridge.  

Furthermore, it has been argued by some that certain designs may be verified by long-term 
observation of existing decks where the details have sufficiently performed. Details that have 
been proven effective by Level 3 designs and long-term observation while subjected to the 
appropriate loads may also be verified by Level 2 (i.e. considering only nominal stresses with 
simplified analysis). Again, great care must be taken to ensure that the detailing and fabrication 
techniques are identical, and that the loading conditions are nearly exact. For example, OSDs 
that have been used successfully in Europe, China, and other locations are subjected to different 
design, and in-situ, axle, and wheel loads and configurations. Thus, the same detail resisting 
those loads may react differently to loads in the United States in a negative fashion.  

Approximate analysis of both open rib and closed rib decks may be based on the Pelikan-
Esslinger method presented by Design Manual for Orthotropic Steel Plate Deck Bridges (AISC, 
1963) and Troitsky (1987). This method gives conservative values of global force effects in the 
OSD supported on longitudinal edge girders. Load distribution of adjacent transversely located 
wheel loads on decks with closed ribs is discussed in the Design Manual for Orthotropic Steel 
Plate Deck Bridges (AISC, 1963).  

Level 3 

Level 3 is based on refined 3-D finite element modeling of the panel and the supporting bridge 
superstructure (where applicable). Localized stress concentrations at sites of potential fatigue 
initiation are quantified for use in the fatigue design. The mesh refinement and stress calculations 
must follow the guidelines provided in Chapter 4. Meshing must be sufficiently detailed to 
perform extrapolation of stresses at weld toes and for resolving the wheel patch pressure loading 
with reasonable accuracy.   

Except for special analyses of stability or composite interactions with the wearing surface, 
structural modeling techniques that utilize the following simplifying assumptions can be applied: 

• Linear elastic material behavior 
• Small deflection theory 
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• Plane sections remain plane 
• Neglect residual stresses 
• Neglect imperfections and weld geometry 
 
Level 3 analysis for structural details is an extension of current AASHTO LRFD methodology 
for fatigue evaluation by nominal stresses. A similar methodology is applied by the American 
Petroleum Institute (API) and American Welding Society (AWS 2004) and is well documented 
by the International Institute of Welding (IIW 2007). It is used extensively for the fatigue 
evaluation of tubular structures and plate-type structures with complex geometries by various 
industries, where there is no clearly defined nominal stress due to complicated geometric effects, 
conditions very similar to orthotropic deck details.  This approach recognizes that fatigue 
damage is caused by stress raisers that exist at details and attempts to quantify them by refined 
analysis rather than classification into general categories. 

Design Level Additional Comments 

In most cases, the Design Level will be dictated by the requirements to provide reliability for 
Fatigue limit states. If no test data is available, Design Level 3 is required unless the designer can 
verify that local distortional mechanisms (Systems 5 and 6 from Chapter 4) are not expected to 
cause fatigue cracking. Limit states with respect to Strength, Service, and Constructability 
generally only require a Level 2 design. For design of panels for bridge redecking applications, 
Design Level 3 should always be used due to complex interactions that can occur with an 
existing bridge structure unless an exception is approved by the owner.  

A design flowchart is provided in Figure 5-2 to help guide the designer to select the appropriate 
design level for OSD details. 

Composite Stiffness 

Design of the steel components of the OSD should be conservatively based on the noncomposite 
(steel only) stiffness in most cases, for both analysis and calculation of stresses. Alternatively, at 
the discretion of the engineer, fatigue design may be based on consideration of composite 
stiffness when a bituminous or cementitious wearing surface is utilized and the required 
properties are proven. Since the stiffness behavior of bituminous surfacing is strongly influenced 
by temperature, loading velocity, and the composition of the system, the stress-reducing effect in 
the steel components cannot easily be described in a design specification. The engineer must 
develop and apply a rational approach to design accounting for the operating temperature ranges 
and daily/seasonal thermal cycling. This often requires a damage accumulation approach to 
fatigue evaluation. 
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Figure 5-2 Flowchart for Selecting the Appropriate Design Level for an Orthotropic Steel 
Deck Bridge Detail 

5.7. FATIGUE RESISTANCE 

Depending on the detail and Design Level applied, there are different approaches for the 
determination of fatigue resistance at details for design. Level 1 Design is based on proof of 
resistance by experimental testing, as described previously. Level 2 Design is based on 
evaluation of nominal stresses near critical details. (This is the philosophy of the current 
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AASHTO LRFD method for fatigue design, with which most designers in the United States are 
familiar.) However, this method has not been fully extended to the design of all orthotropic panel 
details and is only applicable to Level 2 design for certain details. For Level 3 design, a 
resistance model must be employed that is compatible with local stresses obtained by refined 
analysis. In this case, evaluation of the local stresses is required. A discussion on each method is 
provided below. 

5.7.1.  Analytical Resistance Models 

5.7.1.1. Nominal Stress S-N Curve Approach for Level 2 Design 

In the nominal stress approach, various details (usually connections) are separated into different 
categories with similar fatigue resistances. This “detail category” accounts for several parameters 
that are highly variable and difficult to quantify in practice (for example, local stress 
concentrations and initial discontinuity size). Full-scale laboratory testing of representative 
details is used to completely define the fatigue resistance of the detail. Typically the data 
generated are subject to a considerable amount of scatter, and therefore a statistically significant 
number of identical tests must be carried out. The data generated consists of the magnitude of 
stress range and number of cycles to failure when subjected to a particular constant amplitude 
loading. It has been observed that the logarithm of the number of cycles (N) to failure is 
approximately normally distributed at a particular stress range (Sr) (Fisher et al., 1974). In the 
lognormal approach, the mean S-N curve is found using a linear regression analysis, minimizing 
the error in log N using the method of least squares with the log Sr as the independent variable. 
The data are then plotted on a log-log scale with the result referred to as an S-N curve, as shown 
in Figure 5-3. The exponential equation of the line is: 

N = C / Sr
m (5-2) 

 
Corresponding to 

logN = logC - m logSr (5-3) 
 
where:   

N  =  Number of cycles to failure, 
C  =  Constant dependent on the detail category, 
Sr  =  Applied constant amplitude stress range, 
m  =  the inverse of the slope. 

 
It is important to recognize that the detail category accounts for the local stress concentration 
effects present at the detail, as well as the variability in discontinuities. This is because it was the 
complete detail that was tested, with same geometry and fabrication procedures used in the real 
construction. Hence, only the nominal stress range at the detail need be calculated. This nominal 
stress is determined in the same manner as that used in strength design and is readily calculated 
using member properties and simple mechanics principles for most common bridge components. 
Because this method uses simple, straightforward procedures to determine the applied stress 
range, the approach lends itself to typical design office practice. However, it is noted that it is 
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absolutely critical that the stress calculated in the fatigue assessment be consistent with that used 
to develop the details classification(s) provided in the given specification. For example, it would 
be inappropriate to use the stress results from FEA, which include the effects of local stress risers 
at a detail, when comparing to an allowable stress for a detail category that developed based on 
the nominal stress approach. 

 

 

Figure 5-3 AASHTO S-N Curves for Fatigue Design by Nominal Stress 

Unfortunately, unique S-N curves obtained from testing are theoretically required for every type 
of detail and all combinations of geometry, orientation, and fabrication method. However, 
because of the large amount of scatter in the data, the subtle effects of many of these factors are 
not readily apparent and many similar details appear to have the same fatigue resistance. Often 
though, some parameters cannot be ignored and are accounted for by increasing or decreasing 
the category. For example, the AASHTO LRFD Specification classification system assigns 
transversely loaded, fillet-welded attachments with welds parallel to the direction of stress and 
end welds ground smooth (see Figure 5-4) as a Category B connection, if a transition radius of  
610 mm (2 ft) is provided. If the transition radius is less than 610 mm (2 ft), the fatigue 
resistance is reduced. If no radius is provided, the fatigue resistance is reduced to category E or 
E’, depending on the thickness of the plates. The nominal stress calculation would remain the 
same as the geometric effect is accounted for by the detail, as determined through full-scale 
testing. 

The fatigue curves presented in AASHTO LRFD (Figure 5-3) were developed through extensive 
research and testing of typical full-scale details known to be fatigue sensitive. These curves 
provide a designer with an estimate of the number of cycles to failure for a given stress range. In 
order to provide a certain amount of confidence, a statistical analysis was made of the data 
during the development of the AASHTO LRFD. The curves shown in Figure 5-3 represent the 
mean minus two standard deviations of the data, resulting in a 97.5 percent confidence of 

       CAFL (Typ.) 
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survival. In other words, there is a 2.5 percent chance a given detail will develop fatigue cracks if 
designed according to the curves in Figure 5-3, ignoring load variability. 

 

Figure 5-4 Illustrative Example of How Detail Geometry Affects Fatigue Category 
Assignment at the Termination of a Longitudinal Attachment Using the Nominal Stress 

Approach 

Test data also suggest that there is a limiting stress range below which fatigue crack growth will 
not occur under constant amplitude loading. This limit is known as the Constant Amplitude 
Fatigue Limit (CAFL), or Fatigue Threshold, and differs for different details. Though not explicit 
in the nominal stress range approach, in reality the CAFL also reflects the different stress 
concentration factors and/or inherent initial discontinuity sizes associated with different details. 
For an infinite life design approach, the designer simply must detail the components such that all 
stress ranges are below the constant amplitude fatigue limit of the detail or that it is exceed only 
a very small number of times. An accepted exceedance interval is one cycle in 10,000. Thus, as 
long as the CAFL is not exceeded more than 0.01 percent of the time, infinite life can be 
assumed.  

For finite life design, the equation presented above can be used to estimate the number of cycles 
to failure, if the stress range is known. It should be noted that the current AASHTO LRFD does 
not require an infinite life design for fatigue. Designers must, however, verify that the detail has 
sufficient fatigue resistance to meet the design life specified by the owner. 

The use of the nominal stress approach lends itself for use in evaluating some details found in 
OSDs where the nominal stress range is easily defined and local distortions do not occur. For 
example, the evaluation of longitudinal bending stress in a rib at a splice is appropriate. 
However, the approach cannot be applied at others such as at the RF detail, where distortions 
occur and a nominal stress can’t be defined. In these cases, one must rely on existing laboratory 
test data (Level 1 Design) or perform refined analysis (Level 3 Design). 

5.7.1.2.Local Structural Stress Approach for Level 3 Design 

Unlike the nominal stress range approach, the local stress approach involves use of a more 
refined analysis to evaluate local stresses at welds that are prone to fatigue. In this case, the 
resistance model is also different, based on calibration between refined stress analysis and test 
data. The local stress approach as defined herein is similar to methods applied by the American 
Petroleum Institute (API) and American Welding Society (AWS) and is well documented in 
worldwide publications and readily available from the International Institute of Welding (IIW). It 
is used extensively for the fatigue evaluation of tubular structures and plate-type structures with 
complex geometries by various industries, where there is no clearly defined nominal stress due to 

Category E or E’ Category B 

R = 24 inches 

No radius 
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complicated geometric effects. The local stress approach recognizes that fatigue damage is 
caused by stress raisers that exist at details and attempts to quantify them by more refined 
analysis (Figure 5-5) rather than classification. 

This approach is based on assessment of the surface stress precisely at the weld toe of the joint. 
The local structural stress (σlss) at the concentration includes all stress-raising effects of a 
structural detail, excluding all stress concentration due to the local weld profile itself (Figure 
5-6). Since the stress gradient is very high in the vicinity of the weld toe due to the notch effect, 
the extrapolation procedure must be used to evaluate the structural stress as described in Chapter 
4. 

 

Figure 5-5 Local Stress Profiles for Welded Details for (a) a welded attachment (b) a Plate 
Size Transition (c) a Cover Plate Termination (d) a Longitudinal Stiffener Termination and 

(e) a Plate thickness Transition in Section (adapted from IIW, 2007) 

 

Figure 5-6 Derivation of Local Structural Stress (LSS) using Extrapolation from Reference 
Points Based on the Finite Element Modeling of the Connection 
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In the local stress approach, a nominal stress range (σnom) can be considered to be modified with 
a stress concentration factor (SCF) denoted as Ks yielding a local or “hot-spot” stress range (σhs) 
at the detail: 

nomshs K σσ =  (5-4) 
 

Similarly, through extrapolation, the local structural stress can be derived by: 

21 5.05.1 σσσ −=lss  (5-5) 

where σ1 and σ2 are the surface stresses at the locations 0.5 t and 1.5 t from the weld toe, 
respectively.  

Although there are standard SCFs published in the literature, it important to recognize that these 
can only be used if they are consistent with that defined with the local structural stress approach. 
A modifier (i.e., SCF) that is consistent with the approach is often referred to as Ks to denote its 
compliance with the method, according to IIW (2007). Unfortunately, limited data is available on 
SCFs in orthotropic panel details for simplified evaluation.  

In cases where both bending and axial stress components are present, Ks,a and Ks,b are used to 
modify the nominal axial and bending stresses separately as the gradients may be different for 
each stress component. In this case, the equation takes the form: 

bnombsanomashs KK ,.,. σσσ +=  (5-6) 
 

An advantage to this method is that a reduced number or even a single S-N curve is all that is 
required. This approach, commonly used in fatigue evaluation of tubular structures, generally 
utilizes a baseline S-N curve. The baseline S-N curve is associated with butt weld or fillet weld 
details in a nominal stress field. In this method, the stress concentration factor accounts for 
effects associated with global geometry, and any local discontinuities and flaws are incorporated 
into the S-N curve. As discussed above for the nominal stress approach, the same statistical 
method of analyzing the test data and providing a lower bound estimate is employed. 

If a single S-N curve is used, a major assumption is that local fatigue failure is independent of 
detail type, and differences in fatigue resistance are entirely incorporated into each SCF. The 
SCF is assumed to account for stress increases near the weld toe, but all details are assumed to 
possess the same initial flaws and local stress concentrations as the base-line specimen. A major 
limitation with this assumption is that using one baseline curve also leads to one CAFL for all 
details. However, it is known that different details may provide different CAFLs at a wide range 
of stress range levels, as well as fatigue lives.  

Another complication is that near the weld toe, stress gradients are rather steep, thus the 
maximum stress used to determine the SCF will be influenced by the mesh size of the FE model 
used in analysis and the strain gage location and length used in the experiments. As a result, SCF 
determined at different distances from the weld toe will each require a compatible baseline S-N 
curve. Unfortunately, where to determine the hot-spot stress at the detail varies in design codes 
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and research recommendations (Fisher et al., 1993). Nevertheless, IIW does provide guidance on 
how to ensure consistency in the application of the technique, both analytically and 
experimentally (IIW, 2007). 

Because the local stress approach requires calculation of a stress concentration at the weld toe, 
the method cannot typically be applied to details having internal flaws. For example, it is 
recognized that full and partial penetration butt joints ground smooth exhibit different fatigue 
characteristics. However, the effects of the internal flaw present in the lack of fusion zone at the 
root of the partial penetration joint cannot be defined by the SCF. Both strain gage data and FEA 
would indicate there are no significant stress gradients that affect the internal discontinuities. The 
SCF for either joint is undefined because there are no surface stress concentrations present. One 
could assume the full penetration joint as the base S-N curve. But, since the SCF for the partial 
penetration joint would be calculated as 1.0, the method would indicate no adjustment in the 
nominal stress is needed. As a result, both joints would be assigned the same SCF and 
subsequently identical fatigue lives. (It is emphasized that the previous statement is only true if 
specific experimental data for each joint do not exist.) 

Recent research has demonstrated that evaluating the local structural stress perpendicular to the 
weld toe and evaluating the stress range with the AASHTO Category C provides a reliably 
conservative assessment of the weld toe cracks at OSD panel welded joints subjected to 
distortional stresses. As previously mentioned, the AASHTO Category C curve is similar to the 
curves provided in the Eurocode (ECS, 1992) and the IIW (2007) for local stress evaluation of 
welded details. Furthermore, research by Dexter et al. (1994) found that the AASHTO Category 
C curve provides the 97.5 percent survival lower bound for welded details on flexible plates 
subjected to combined in-plane and out-of-plane stresses in all cases where local stress measured 
5 mm (3/16 inch) from weld toe was used for the fatigue life stress range. The work by Connor 
and Fisher (2006) also found similar results. Therefore, for Level 3 Fatigue Analysis, the 
AASHTO Category C curve (Figure 5-3) is conservatively used in conjunction with the LSS 
approach. This is predicated on the modeling and stress analysis being conducted by the 
prescribed methods given in Chapter 4.  

5.7.2.  Rib-to-Deck (RD) Weld  

This connection can be designed and detailed using either a one-sided fillet weld or a partial 
penetration weld, depending on the application. When the panel is being used as a deck subjected 
to direct traffic loading, the partial penetration weld should always be used. In other cases, the 
fillet weld can provide cost-effective design. Provided that sufficient penetration exists and the 
gap is sufficiently small to ensure that root cracking does not occur, the fatigue strength of the 
weld will be controlled by traditional weld toe cracking in the deck plate or rib wall, and should 
be treated as an AASHTO Category C detail with CAFL = 69 MPa (10 ksi). The stresses in this 
joint are typically dominated by transverse bending from behavior systems 1 and 2 as described 
in Chapter 4, and thus can be assessed by either Level 2 or 3 Analysis.  

In order to use the nominal stress approach for Level 2 Design, several simplifying assumptions 
need to be made regarding how the wheel load is distributed to this joint and hence, calculate the 
nominal stress range at the weld toe. Experimental tests indicate that the effective width for 
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transverse strip analysis can be conservatively taken to be the length of the wheel patch footprint 
(10 inches) plus any load dispersion through the wearing surface thickness.  

In-service monitoring has shown that the front wheels of trucks are the ones that typically cause 
the maximum stress in this joint, even though the magnitude of the front axle loading is less. The 
single tire front wheel will typically fit within the distance between the rib walls, which 
maximizes transverse bending stress at the weld. 

5.7.3.  Rib Splice  

Rib splices can be either bolted or welded. Welded rib splices can eliminate the need for internal 
sealing plates, but this approach obviously adds field welding to the construction and requires a 
one-sided full penetration weld with internal backing bar left in place. Welded splices also have 
the advantage of providing continuous ribs from end to end of the bridge, which offers benefits 
to inspection, and the possible double use as a dehumidification duct to circulate air. The fatigue 
performance of the various details used to splice ribs is mixed. Interestingly, most of the details 
that have performed the poorest would either not be permitted in the United States according to 
the current AASHTO LRFD fatigue provisions, or their failures could have been predicted had a 
basic fatigue consideration been made. Kolstein provides an excellent summary of the 
performance of many failed rib splice details in Europe, Australia, and Japan (Kolstein, 2007). 
However, the review is focused on welded splice details, as they have been more common 
abroad. These have also been plagued most with fatigue cracking. However, in the United States, 
the bolted rib splice has been the preferred method in the last 10 to 15 years and will likely 
remain as such. The performance of this connection has been excellent due to its inherent high 
fatigue resistance.  

Based on the measurements made in the laboratory and the field, the stress range in the rib can 
be calculated by Level 2 or 3 Analysis. The fatigue resistance of the high-strength bolted 
connection can be classified as AASHTO Category B, with CAFL = 110 MPa (16 ksi) when the 
bolts are fully pretensioned. The fatigue resistance of the welded connection can be classified as 
AASHTO Category D, with CAFL = 48 MPa (7.0 ksi) when the weld root gap is at least the 
thickness of the rib wall. 

5.7.4.  Deck Plate Splice  

Deck plate splices are typically made in the field using a complete joint penetration groove weld 
from one side, with or without backing bar removed. Bolted splices have been used in some 
applications, but welded splices are generally preferred. A thicker wearing surface is required in 
cases where a bolted connection is utilized to sufficiently overlay the bolt heads. A number of 
deck plates splice details that have been used with apparent success are shown in Chapter 6. It 
would seem that these joints provided adequate stiffness and resistance to local bending.  

The fatigue stresses at this detail can be evaluated using Level 2 or Level 3 Analysis. Most deck 
splices are subjected to wheel loads causing local response; for other cases, the design need only 
consider in-plane effects. Longitudinal splices should be located away from primary wheel paths 
to minimize the number of stress cycles from passing wheels. If local bending due to the wheel 
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loads is substantial, it may be appropriate to conduct testing or apply other weld improvements to 
ensure long-term performance. 

5.7.4.1. Transverse Splice 

These splices are subjected to both in-plane stresses from the deck panel spanning between FBs 
and local bending stresses from the deck plate spanning across the opening in the ribs. The weld 
toe at the termination of the rib can be protected by minimizing the width of the opening as 
described in Chapter 6. The rib and weld is terminated to permit access for installation of the 
backing bar.  

In other regions when the weld is subjected to longitudinal in-plane stresses in the deck plate 
alone (e.g. between ribs) the joint could be classified as Category D, C, or B, depending on the 
level of non-destructive testing (NDT), and if the weld toes and backing bars are removed. The 
joint would be similar to a girder flange splice subjecting to minimal stresses, as classified by 
AASHTO. The fatigue resistance of the deck plate splice subjected to in-plane stresses, without 
the backing bar removed, is classified as a Category D detail in the previous versions of the 
AASHTO LRFD. This is consistent with full-scale fatigue testing of very similar details on 
beams containing cope holes at splices with backing bars subjected to longitudinal stress ranges 
(Dexter and Kelly, 1997).  

The local out-of-plane bending stress field is dominant, as demonstrated by field measurements. 
Although the actual fatigue resistance of this detail has not been fully established through 
specific testing, it is proposed that it can reasonably be considered an AASHTO Category C 
detail with respect to out-of-plane bending stresses at the weld toe, based on tests conducted on 
stiffeners subjected to out-of-plane deformation and other similar details susceptible to weld toe 
cracking (Fisher et al., 1990). However, as stated, the fatigue strength of this detail subjected to 
out-of-plane bending stresses, produced by the vertical wheel loads, has not been well 
established. 

5.7.4.2.Longitudinal Splice 

For most of their length, these splices are dominated by local bending in the deck plate as it 
spans transversely between ribs. At the FBs, the splice is also subjected to in-plane stress. 
Similar to transverse splices, this detail should be considered Category D for in-plane stresses 
and Category C for out-of-plane stresses. Locating these splices away from primary wheel paths, 
and applying finite life design, is an effective way to achieve the most durable design. 

5.7.4.3.Bolted Splice 

Assuming adequate stiffness (i.e., resistance to local bending from wheel loads) is provided, the 
fully tensioned bolted connection could be evaluated using the nominal stress approach and 
classifying the detail as AASHTO category B with CAFL = 110 MPa (16 ksi). 
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5.7.5.  Rib-to-Floorbeam (RF)  

There are two accepted approaches to detailing the intersection of the rib to the floorbeam (RF):  

1. Providing a stress relieving cut-out in the FB web below the rib 
2. Providing a tight fit between the continuous rib and FB with a continuous weld all-around.  
 
At the time of this writing, standardized procedures to evaluate this connection with respect to 
the Fatigue limit state have not been fully developed and validated. Even a quick literature 
review will reveal that there are several proposed methods available. While some have been 
calibrated with full-scale experimental work, other methods, though used successfully in other 
industries, have not been compared to data obtained from testing details specific to OSDs. 
Regardless of the method used, it is clear that the RF has the greatest potential for cracking.  

Considering the above requirements, it is clear that the Level 2 nominal stress approach as 
contained in AASHTO LRFD Specifications can only be used for evaluation of rib primary 
flexural stresses. For stresses in the FB web, cut-out, and rib wall distortion, the “nominal” stress 
range cannot be calculated using a simplified approach. Therefore designers must rely on 
alternative analysis methods, such as refined structural analysis (Level 3 Design) where the local 
structural stress can be evaluated with Category C as shown in Section 5.7.1.2, and/or by direct 
strain measurements on an appropriately loaded prototype specimen (Level 1 Design) to track 
the actual S-N behavior of the local structural stress.  

Detailed guidance for evaluation of the likely fatigue prone areas is summarized below. 

5.7.5.1.Cut-out Detail 

The fatigue resistance of the RF connection with cut-out first depends on the type of weld that is 
selected. This weld can be either a two-sided fillet weld or a CJP weld with termination ground 
smooth. The fillet weld is the option with least fabrication cost, but the CJP offers superior 
fatigue strength for rib wall distortional cracking. Some designers have also utilized a transition 
from fillet to CJP to minimize weld cost but gain the smooth termination. To utilize the fillet 
weld, the rib may require stiffening or the FB spacing may require reduction. The designer must 
consider these options carefully before making a selection.  

Rib Cracking 

At the RF weld, fatigue cracks may initiate in the rib from primary flexural stress in the 
longitudinal direction. This is considered a traditional weld toe crack at a transverse stiffener, 
and can be considered an AASHTO Category C detail with CAFL = 69 MPa (10 ksi). This can 
be evaluated by either Level 2 or Level 3 analysis. Although much of the stress cycle at the 
bottom of the rib is compressive, this site will typically see stress reversal due to flexibility in the 
FB. 

Rib Wall Distortional Cracking 

When the cut-out detail is used, fatigue cracks may develop in the rib wall at the cut-out 
termination due to distortion of the rib cross-section. In almost all cases, the cracks initiate at the 
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weld toe, even though it may have been removed and ground smooth. Even in the presence of an 
internal bulkhead plate, rib wall distortions can be expected, thereby producing local transverse 
bending stresses in the rib wall at the weld toe. It is noted that these local stresses are additive to 
the longitudinal bending stresses. Thus, any evaluation procedure must take into account both 
stress components to ensure an adequate design is achieved.  

The CJP with ground termination serves to reduce the stress concentration in the rib wall as 
compared to the fillet weld option, but at an increased weld cost. Both options have performed 
satisfactorily and should be considered. Since no simplified methods exist to evaluate this detail 
and nominal stress is undefined, Level 3 design by the local stress approach should be used with 
resistance of AASHTO Category C with CAFL = 69 MPa [10 ksi], or by testing and Level 1 
design. 

Floorbeam Web Cracking 

Fatigue cracks may also initiate in the FB web at the weld toe. This location is subjected to both 
in-plane and out-of-plane stresses, and can only be assessed by Level 3 analysis. Based on his 
review of the existing data, Kolstein suggests using European Category 71, which effectively 
corresponds to AASHTO Category D in the finite life regime up to a limit of five million cycles 
(Kolstein, 2007). It is believed that this lower recommendation is based on the fact that his 
database included some details possessing a lower fatigue resistance (e.g., sharper radius 
transitions, etc.) than included in the database developed at Lehigh University based on years of 
testing. Kolstein also suggests that the stress range be calculated using the local structural stress 
approach, but notes that more data are needed to better define the appropriate design category to 
confidently use this approach. 

Based on the testing conducted in the United States, the fatigue resistance of the full-penetration 
RF weld can be characterized as an AASHTO Category C detail (Tsakopoulos and Fisher, 1999, 
2002). However, the use of Category C is predicated on the assumption that the stress range at 
the detail is calculated in a manner that is consistent with how the stresses were determined 
during the fatigue tests (Connor and Fisher 2006). As an alternative, a preliminary review of the 
data obtained from the Lehigh University tests suggests that using Category C with the local 
stress approach should result in conservative designs.  

Root Cracking 

Fatigue is also possible in the root of the RF weld, especially for details utilizing the internal 
bulkhead, depending on the proportions of the fillet or PJP welds and the thickness of the 
bulkhead plate. Also, both terminations are difficult to fabricate for achieving physical 
transitions that do not have inherent asperities.  

For cases where continuity of the FB and bulkhead are intended by design (creating a cruciform 
detail), the AASHTO LRFD uses the Frank-Fisher formula (which can be found as equation 
6.6.1.2.5-4 in the AASHTO LRFD Bridge Design Specifications [AASHTO, 2010]) that 
includes three parameters: a) plate thickness “tp”; b) internal notch length “2a”; and c) weld leg 
“H”. Figure 5-7 shows the cruciform detail fully aligned and with the modification of category C 
(toe cracking) to a degraded category (root cracking). The modification formula shown in Figure 
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5-7 presumes no termination effects that may develop at the top of the bulkhead. Because the 
stress concentration is highly dependent on the stress pattern internal to the FB, increments in 
stress concentrations are envisioned.  Eccentricities between the bulkhead and FB web are 
considered a fabrication quality issue and are not typically accounted for in design (see Section 
6.5). For these reasons, as well as for associated costs, designs should start without the use of a 
bulkhead, if other alternatives are available. 

 

Figure 5-7 Fatigue Resistance for Cruciform Detail to account for Root Cracking 

Base Metal Adjacent to the Cut-out 

The material at the inside edge of the cut-out is subjected to high stress ranges due to the 
interruption in the stress field in the FB plate. Out-of-plane stresses also contribute to the stress 
range at this detail. There are no details included in AASHTO LRFD that directly apply to this 
detail. Since this location is subjected to both in-plane and out-of-plane stresses and nominal 
stress is undefined, it can only be assessed by Level 3 analysis. 

Since there are no welds involved, the surface or edge of the cut-out can be considered a base 
metal condition if properly finished (i.e., ground). It could be argued then, that the edge of the 
cut-out can be characterized using the category for base metal (i.e., Category A). However, 
Category A applies to base metal that is ground smooth and was developed from rolled sections 
with straight edges with the principal direction of stress parallel to the edge under consideration 
(Fisher et al. 1974). If the surface of the cut-out is inspected and ground smooth, only the stress 
concentration effect due to the geometry of the cut-out need be addressed in order to apply 
Category A. (As per the AASHTO LRFD Bridge Design Specification [2010], a ‘smooth’ flame-
cut edge must comply with ANSI/AASHTO/AWS D1.5 and have smoothness of 1,000 u-in or 
less.) Using the finite element method or experimental measurements, the stress range along the 
cut-out can be determined and a fatigue analysis performed.  
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The procedure to design and analyze the base metal at the cut-out is proposed as follows:   

1. The stress range along the edge of the cut-out must be determined by either refined analysis 
(Level 3) or laboratory tests (Level 1). If refined analysis is used, a sufficiently refined mesh 
must be used. The stress range used for evaluation must be tangent to the edge of the cut-out.  

2. It may be necessary to experimentally measure or calculate the stress a defined distance from 
the free edge of the cut-out for calibration. For example, if experimental measurements are 
used, it is very difficult to make strain gage measurements exactly at the edge of a plate 
subjected to in-plane and out-of-plane stresses. Finite element results would also be more 
consistent a small distance from the edge of the mesh. Based on the laboratory data 
(Tsakopoulos and Fisher, 1999, 2002) and the above reasons, a 6 mm (1/4 inch) offset is 
proposed. This corresponds to a location that is consistent with the strain gage placements in 
laboratory and field (Tsakopoulos and Fisher 1999, 2002; Connor and Fisher 2001, 2004, 
2006). 

3. The stress range would be compared to the CAFL for Category A (CAFL = 165.6 MPa [24 
ksi]) for infinite life designs. For finite-life calculations, the S-N curve for Category A should 
be used. The edge preparation of the cut-out must be consistent with the requirements 
prescribed for Category A, as contained in AASHTO LRFD. 

 
5.7.5.2.Weld All Around Detail 

The second viable alternative for connecting the rib and FB does not utilize a cut-out at the 
bottom of the rib. In this case, the rib is continuous through the FB, which is fitted tightly into 
the FB “window.” Once fit up is complete, a weld is placed around the outer perimeter of the rib 
on both sides of the FB web plate, typically a fillet weld. If only a fillet weld is used, a lack-of-
fusion plane will exist where the FB web is not fused to the rib wall. Cracks may develop from 
the root of such welds, primarily driven by the in-plane stress component in the FB. However, 
toe cracks in the rib and/or FB plate will most often control. Obviously, if this detail is selected, 
a very clear understanding of the demands placed upon the joint is required. It should also be 
noted that the all-around weld detail places a Category C detail at the bottom fiber of the rib for 
primary flexure. The associated weld toe is located where the longitudinal bending stresses 
would be greatest and where additional out-of-plane stresses may be present due to distortion of 
the rib wall. Nevertheless, there are examples where bridges with this detail have demonstrated 
excellent in-service performance.  

Generally speaking, for the fully welded detail to be successful, a flexible FB plate is essential in 
order to accommodate the distortion from the rib rotation. Hence, this detail may not be feasible 
in cases where a very shallow FB is required, as is often the case where a shallow deck is placed 
on existing bridge FBs.  

Floorbeam Web Cracking 

It is the opinion of the authors that this connection should always be detailed such that sufficient 
weld penetration is provided to ensure that root cracking does not control, especially at the 
bottom of the rib. Assuming this is guaranteed, weld toe cracking will then control. Hence, the 
detail could be evaluated using the same methods proposed for the cut-out detail described 
earlier. However, rather than focusing at only one location, as can generally be done with the 
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cut-out detail, the entire perimeter of the connection must be examined for the Fatigue limit state. 
Note that the components of in-plane and out-of-plane stress must both be considered and 
stresses perpendicular to weld toe should be used. 

Consideration of Compression and Shear Stress Cycles at Concentrations  

In the design of this detail, careful consideration must be given to the treatment of compressive 
stress cycling because the majority of the stresses generated by wheels over this location will be 
compressive. Generally, compressive cycling may cause initial damage at welded details where 
tensile residual stresses exist, but will eventually be unable to cause further crack propagation as 
the stress field is adjusted, and only tensile stresses from the spectrum that overcome 
compression from dead load would drive continued crack growth. AASHTO LRFD states that 
fatigue design provisions shall only be applied to details where the compressive (permanent) 
stress is less than twice the maximum tensile live load stress (AASHTO, 2010). Conversely, 
certain codes dealing with welded structures consider compressive cycling to be equally 
damaging as tensile cycling in all cases. In OSDs, the point at the bottom of the rib is subject to 
several stress components (Figure 5-8), which make applicability of AASHTO LRFD 
questionable. As such, it may be prudent to consider compressive cycling to be fully damaging 
because the rib material is thin and any propagation by one mode could continue into a different 
mode. 

 

Figure 5-8 Stress Conditions at Base of Rounded Rib subjected to Shear Stresses between 
the Deck and the FB Web and Vertical Effects from Out-of-plane Flexure of the FB 

At the bottom convergence of the rib and FB there are orthogonal stresses and shears. The 
vertical effects in the FB and the longitudinal stresses in the rib are not in phase with the shears 
in the FB and with the in-plane effects due to floor beam bending. This is called non-
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proportional loading and detrmining the range of stress will most likely require an influence 
surface based approach (see Section 4.6.1).  

There are also concentrations in the FB web on both sides of the belly at the end of the tangent 
part of the rib where it meets the curved part. The principal stresses there are not perpendicular to 
the weld toe. Stresses perpendicular to the weld toe are to be used for the fatigue design 
verification, but many software tools will not have the ability to develop the stress influence 
surface at a specified orientation. The evaluation criteria necessary for this detail have not been 
fully developed and validated and it may be prudent to use more conservative criteria. 

5.7.6.  Rib-to-Deck at the Floorbeam (RDF)  

Fatigue cracking at the rib-to-deck at the floorbeam (RDF) welded joint has received relatively 
little attention, compared to some of the other fatigue prone details used on OSDs. As with other 
details, there is a variety of methods that have been used to make this connection. The fact that 
the state of stress at the detail has received relatively little attention is most likely due to the fact 
that the joint is complicated to address analytically, especially with respect to the Fatigue limit 
state. Much of the limited experimental data for the connection was reviewed by Kolstein (2007) 
and recommendations were made as to how to best evaluate the joint. However, he clearly states 
that the data used to make the recommendation are limited.  

This connection has been detailed using several different geometric configurations. One of the 
most obvious differences between the details is in the use of a cope hole in the FB web. Early 
designers believed that intersection of the rib and FB welds was not preferred, and chose to detail 
a cope hole in the top corner of the FB to allow uninterrupted passage of the RD weld. However, 
the termination of the FB to deck weld was found to initiate fatigue cracks in the deck plate, 
while the non-coped detail performed well in service. The intersecting weld is believed to be 
acceptable since there is minimal triaxial restraint and plate components are relatively thin. The 
present recommended detail is the non-coped approach. The overall field performance of the 
joint suggests it offers superior fatigue resistance. Since there is limited experimental data 
available, any recommendations with respect to the design of the joint are based on engineering 
judgment and rely upon existing methods of evaluation. Kolstein seems to suggest a similar 
approach, i.e., relying somewhat on the performance of joints that appear to be performing well 
in service when selecting the configuration of this joint (Kolstein, 2007).  

A local stress concentration is created in the RDF weld root at this location due to the local 
“rigid” support from the FB web and the distortions that occur in the deck plate from in-plane 
flexure of the FB. Root cracking is controlled in other typical locations of the RD weld by 
limiting the gap tolerance to achieve closure of the root after welding. It is not certain whether 
such gap control alone is sufficient to prevent root cracking at the RDF in all cases.  Tensile 
stresses at the RDF root may be large enough to open the gap and cause cracking in some cases.  

Clearly, Level 2 Analysis cannot be applied to this detail since there is no nominal stress that can 
be determined and stresses are primarily distortional. This detail can only be verified by Level 1 
or 3 Design approach. Unfortunately, application of Level 3 Analysis to this detail is beyond the 
limits of the method as described earlier (i.e. does not apply to root cracking). It is not known 
how effective the local stress approach with AASHTO Category C limit will be at prediction and 
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control of RDF root cracking since the notch condition is different from that at the weld toe. 
Also, little known research has been done to quantify the performance of the detail and 
parameters of influence. This should be the subject of future research efforts. Until then, Level 3 
can be applied, but with additional verification to best extent reasonably possible.  

5.7.7.  Summary 

A summary of the fatigue design requirements for fatigue-prone orthotropic panel details, 
including illustrative examples, is shown in Table 5-1. 
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Table 5-1 Summary of Fatigue Design Requirements for OSD Details 
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* Where stresses are dominated by in-plane component at fillet or PJP welds, Figure 5-6 shall be 

considered. In this case, stress should be calculated at the mid-thickness and extrapolation 
procedure need not be applied. 
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5.8. FRACTURE CONSIDERATIONS 

Fatigue and fracture are two related, albeit different, limit states that need to be checked in the 
design and evaluation of all dynamically loaded steel structures. In its most simple form, fatigue 
is the crack growth of a flaw due to cyclic or repetitive loading. Generally, the Fatigue limit state 
is defined or met when a crack grows to through-thickness of the component. However, in many 
structures, this is really just a serviceability limit state and does not necessarily mean that the 
structure is in danger of fracture or collapse. This is especially true in the case of OSDs, as they 
are highly redundant systems. There are numerous examples of cracked OSDs, some with very 
large cracks, which show no signs of distress in terms of load carrying capacity. 

Although there are no known failures attributed to brittle fracture in ODSs, fracture is a unique 
limit state that is distinguished from fatigue. Since many engineers incorrectly use the terms 
interchangeably or always in the same sentence, there has been some confusion as to the 
difference of the terms. In its simplest form, brittle fracture, as referred to herein, is the rupture in 
tension in conjunction with rapid, unstable extension of a crack, leading to gross deformation, 
complete separation of the component, and usually loss of function or serviceability. Fracture is 
addressed in the AASHTO LRFD Specifications through material selection to achieve specified 
levels of fracture toughness.    

Although the possibility of brittle fracture of a given component of an OSD exists (e.g. fracture of a 
rib at a welded detail), fatigue has traditionally been the limit state that controls and is the focus of 
design. OSDs are not fracture critical on their own.  A bridge with an ODS would only be 
classified as a Fracture Critical Member (FCM) if the girder portion was a non-redundant 
member subjected to tension. Hence, in the preceding discussions, the emphasis has been placed on 
the Fatigue limit state. However, there are several good texts that can serve as a starting point for 
more in-depth study of brittle fracture (Barsom and Rolfe, 1987) (Anderson, 2005). 

5.9. REDECKING CONSIDERATIONS 

Orthotropic panels for the redecking of existing bridges can be designed and detailed as a 
“floating” system with weak, flexible connections to the existing framing or as an integral 
system with rigid connections. Generally, the latter is the preferred approach, since this allows 
for the reduction or elimination of deck joints and adds rigidity to the existing framing. However, 
this requires careful Level 3 Design of the composite structure, including evaluation of any new 
concentrations that may be created in the existing framing. In all cases, connections must be 
designed and detailed to address the interaction stresses.  

For the construction of an analytical model, rigidities must be assigned to all connections, which 
must have strong similitude to the actual ones. There must be accurate modeling of at least one 
connection, from which all the rigidities of other connections are represented by idealized 
ligaments, and all are then correctly represented.  

The available depth over the existing floor beam or floor truss is the greatest determinant in 
selection of crossbeam spacing (over stringers), and of rib-diaphragm design options in 
redecking projects. Various options are covered in more detail in Chapter 6. 
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6.  DETAILING 

Detailing is a critical step in the development of a cost-effective and safe design of an orthotropic 
bridge. This is especially important for orthotropic steel deck (OSD) bridges since much of the 
design is controlled by Fatigue limit states, which are sensitive to localized effects. Detailing 
involves selection of components and connection geometries to make the system successful, 
balancing the requirements for structural performance, economy, and constructability. This 
demands a full understanding of the controlling parameters from an engineering perspective, as 
well as close communication with fabricators and contractors with experience in the construction 
of orthotropic bridges. Some detailing decisions, such as material selection, can be made 
somewhat independently, but others, such as the rib-to-floorbeam (RF) connection, must be 
made with careful consideration of impacts to the rest of the system. 

Selection of details must rely heavily on the past record of performance and test data (when 
available). As outlined in Chapter 5, the Design Level can vary depending on the availability of 
test data on similar details (see Section 5.1.1). This demands that the designer be familiar with 
the worldwide literature related to orthotropic construction. Two of the most important detailing 
decisions that must be made are as follows: 

• Welded or bolted splices. 
• Cut-out or weld-all-around RF connection. 
 
Each of these options has advantages and disadvantages, which have been discussed throughout 
this Manual. All have proven successful. Ultimately, the designer must select a detailing 
approach that addresses criteria for design, construction, and maintenance. This chapter provides 
general rules for appropriate structural details related to steel components and connections for 
inclusion in the contract plans.   

6.1. MATERIALS 

Structural Steel  

Current practice is to use ASTM A709 Grade 345 (Grade 50) material in most cases, consistent 
with other common steel bridge structural members. Grades of lower strength are possible, as 
design is fatigue driven, but they tend to be of decreased availability. Uncoated weathering steel 
is not recommended in conditions where the underside of the deck is exposed to salt spray or 
other environmental conditions that would negatively affect performance. HPS material could 
work well but the added expense is likely not justified. Because OSDs are highly redundant, 
standard toughness is typically specified. OSDs would only be classified as a Fracture Critical 
Member (FCM) if the deck was part of a non-redundant girder subjected to tension. 

Generally, in OSD construction, mill plates have the direction of roll oriented the direction of the 
ribs and bridge axis. It has been argued that the elongated grains, in the steel, running transverse 
to the ribs, and in the direction of the floorbeam (FB), would retard crack propagation in critical 
areas. The extent to which this might occur is not known, and is in most cases impractical. 
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Consumables 

American consumables fall under AWS A5 criteria, but must be validated by Welding Procedure 
Records (WPR). Also, the usual practice is to fabricate customized mock panel tests in which 
macroetching and other tests are used to validate the weld process (see Chapter 7). In the past, 
consumables using the automated submerged arc welding SAW process for the rib-to-deck (RD) 
weld have faired best. For FB welding, Shielded Metal Arc Weld (SMAW) and Flux Core Arc 
Weld (FCAW) are the processes more often used. Gas Metal Arc Weld (GMAW) can be used, 
however, to produce smooth welds of high quality, but a greater degree of welder experience is 
necessary. 

As many fabrications of OSDs occur abroad, specifications typically require that consumables 
conform to American standards or be produced by American manufacturers. 

6.2. CORROSION PROTECTION 

The corrosion control strategy should be selected in a manner similar to other common steel 
bridge structures, with options including use of: 1) material resistance 2) coating or 3) 
dehumidification.  Uncoated weathering steels and other common bridge coatings can be 
expected to perform very well on the OSD since there are very few deck joints and few places 
for debris to collect. Currently there are no known examples of any OSDs with a zinc coating of 
any kind. This may not be viable due to limitations in hot-dip baths and concerns about further 
reduction in fatigue resistance at welded details.  
 
Addressing corrosion may require different strategies depending on area being protected. Four 
areas of corrosion protection need to be addressed: 
 
• Top of the deck plate. 
• On the exposed bottom of the deck. 
• Inside closed ribs. 
• Inside of box girder (when applicable). 
 
Deck Plate Protection 

The bonding agent that serves as a substrate to the wearing surface also serves as waterproofing 
for the OSD. When an asphalt wearing surface is used, a waterproofing membrane that bonds to 
the steel is used. Two types are predominant in the United States: a) a methacrylate compound, 
on the order of 3 mm (1/8 inch) thick, with grit cast on it, or b) an epoxy-asphalt mixture with 
silica sand, about 25 mm (1 inch) thick. The first is sprayed on and dries to a rubber-like 
consistency, the latter dries to a hard concrete. Both serve as waterproofing and as substrates to a 
wearing layer of asphalt. Consideration must be given to the surface preparation for adequate 
bonding of the wearing surface system. This is usually dictated by manufacturer’s requirements, 
and often involves shot blasting prior to application of the initial surfacing layer. 

Instead of asphalt, some bridge owners use polymer concrete as a wearing surface, especially in 
long suspension bridges. This is done to reduce suspended deck structure weight. Polymer 
concrete layer is in the order of 9 mm (3/8 inch) thick and serves as waterproofing as well. There 
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are two types of installations, slurry or multiple-layer. The first method involves using slurry 
with mixed-in fine aggregate, which is applied with a squeegee onto a clean deck and coarse 
aggregate is applied prior to drying.  The second method is constructed in layers of epoxy and 
cast aggregate. Both surface types contain epoxies with “flexibilizers,” or urethanes that render 
them less brittle.  

For further discussion of properties, advantages, and disadvantages of alternate substrates and of 
epoxy concrete, the reader is referred to Chapter 9.  

Bottom of Deck 

Protection of the bottom of OSDs is typically achieved with the use of a paint coating system. 
Painting technology for bridge structures is an ever-evolving science. The FHWA has ongoing 
studies at the Turner-Fairbank Highway Research Center that will provide key findings, not only 
on preparation and coating performance, but on corrosivity of environments, environmental 
compliance, toxicity and containment, etc. Preliminary findings are that three-coat systems in 
which zinc based primer, epoxy coat, and urethane finish coat work the best. Various state DOTs 
and bridge owners will derive from these studies their own standards and practices. 

Paint systems are most often applied in the shop and touched up in the field where damaged by 
transportation and handling, or over field-welded areas. OSDs are optimal structures for resisting 
corrosion, as they have smooth surfaces and no perches, such as bottom flanges for moisture to 
pond or for birds to nest.  

Rib Protection   

The rib needs to be protected internally from corrosion due to condensation. The common 
practice in the U.S. is to place internal steel bulkheads (sealing plates) on each side of the bolted 
splice to completely seal the ribs from moisture penetration. These are welded all around or 
welded along the rib and caulked at the top. This prevents moist air from entering the inside of 
the closed rib. In the area of the splice, the ribs are painted internally.          

Interior of OSD Box Girder 

Where orthotropic ribs stiffen the walls of a box girder, the interior of the box girder needs to be 
protected internally from corrosion due to condensation. This can be accomplished with a 
coating, or by a dehumidification system, which has been done successfully overseas in many 
cases. Since the entire interior space is protected by this system, the internal sealing diaphragms 
in the ribs at the splices are not needed and maintenance of the interior surfaces is not required. 
Inspection of welds is easier because the welds are not painted and the access is provided without 
disturbance of the traffic below or on top of the bridge. 

6.3. GENERAL PROPORTIONS 

Orthotropic bridge fabrication is labor intensive, and the design should not strive solely to 
minimize material. As discussed in previous chapters, this has been one of the leading causes of 
fatigue and wearing surface failure in early designs. Rather, the design should strive for 
repetition in details, lending itself to automation and advanced technology, such as automatic 
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welding processes and robotics to maximize economy. OSDs require significantly more shop 
welding than any other steel bridge system. Strictly speaking, there is nothing difficult about 
fabrication of OSD panels, compared to other steel bridge construction, except for a singular 
welding issue for the RD connection and time consuming cut-out details, if they are required. 
Erection of OSD panels in deck replacements is now commonplace, even if strict field welding 
rules must be applied.  

The recommended limits for panel detailing proportions are summarized in Table 6-1.  

In box girders designed for suspension bridges, where low resistance to cross winds is necessary 
and sharp corners are part of the outer edges of the boxes, close attention must be paid to access 
for welding of stiffeners and shell plate corners. 

Table 6-1 Recommended Limits for Orthotropic Panel Proportions 

 

6.4. RIB-TO-DECK PLATE (RD) WELD 

Historically, the RD weld has been specified as a one-sided, partial penetration weld with 80 
percent minimum penetration and limited melt-through. Because of inherent variations in 
components when ribs are thin, weld size has tolerances that are of a high magnitude relative to 
rib thickness. Achieving a minimum of 80 percent penetration without melt-through is difficult. 
Fabricators, fearful of melt-through, have chosen electrode angles of 60 degrees with the deck 
plate, without preparing a bevel in the rib, and have often failed to achieve 80 percent 
penetration. The primary factors that are known to influence the fatigue resistance of the joint 
are: penetration, melt-through, and root gap. 

Penetration 

It is not known exactly where the “80 percent rule” came from and hence, it appears somewhat 
arbitrary. A review of the literature suggests that it was more of a practical limit, i.e., the 
maximum penetration that could be achieved without regularly resulting in weld melt-through. 
Kolstein’s review of existing test data suggested that the weld throat should be, at a minimum, of 
the same size as the rib wall and that the amount of penetration should be between 50 to 80 
percent (Kolstein, 2007). This statement must be used with caution, however, as the influence of 
the lack of fusion zone size is not constant for different plate thicknesses with constant weld 
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reinforcement size. In other words, 50 percent penetration in a 9 mm (3/8 inch) thick rib wall 
would result in a different fatigue resistance than a 50 percent penetration weld in a much thicker 
rib wall with the same weld reinforcement. However, for typical values of rib wall thickness 
used in highway bridges, the range would seem reasonable.  

Although Kolstein suggests a lower limit of 50 percent, this can result in a rather large lack of 
fusion plane and greater penetration is recommended. Accordingly, penetration levels between 
70 to 95 percent, with a target of 80 percent, seem more reasonable. The lower bound of 75 
percent is from FEA analysis by Xiao, which indicated that increasing the penetration above 75 
percent did not result in any significant improvement in fatigue resistance of the joint (Xiao et al 
2008), though no experimental work was performed as part of the study. Nevertheless, all of the 
data suggest that a range for the degree of penetration is appropriate and that requiring 80 percent 
is not justified.  

Melt-through 

There are legitimate concerns that weld melt-through could create undesirable discontinuities at 
the root that could become the source of fatigue crack initiation, and therefore it should be 
avoided (Ya, 2011). Fatigue tests conducted by Sim and Uang (2007) at the University of 
California at San Diego, on behalf of Caltrans, however, indicate that melt-through is not a real 
problem, even when intentionally introduced after 80 percent penetration, to create abrupt 
transitions. This suggests that, using SAW, weld size limits between an 80 percent minimum 
penetration and a maximum amount of melt-through should be a workable and acceptable 
fabrication procedure, even for 8 mm (5/16 inch) rib thickness. 

Root gap 

Recent research has shown that fatigue resistance of the weld is clearly improved when the root 
gap is closed in the final condition (Wright, 2010). Shop experience indicates that using a tight 
fit prior to welding will also help prevent weld melt-through with a limit of 0.5 mm (0.020 inch).  

As a result, the consensus is that the proposed detailing criteria for the weld between the webs of 
a closed rib and the deck plate be a one-sided, nominal 80 percent penetration, with 70 percent 
minimum and no blow-through, and with a tight fit less than 0.5 mm (0.020 inch) prior to 
welding. Additional fabrication techniques and tolerances are discussed in Chapter 7.  

6.5. RIB-TO-FLOORBEAM (RF) CONNECTION 

At the rib-to-floorbeam (RF) connection, fatigue cracks have been observed in the rib wall and 
FB at weld toes and weld terminations at cut-outs. The detailing must be made to prevent such 
crack growth. This detail is the most labor-intensive of all the details, and is where the designer 
is free to choose the geometry. Cracks at the RF are generally due to the presence of high out-of-
plane stress ranges due to distortion of the rib wall. The distortion comes from the FB pumping 
the rib wall in and out-of-plane. Where cut-outs are used, the problem can be likened to web gap 
cracking at transverse stiffeners in a plate girder. In order to prevent such cracking, internal FBs 
or bulkheads have been used to ensure the geometry of the rib is maintained, and hence the 
distortion minimized or eliminated. However, bulkheads may create other problems (see Section 
4.1 for more discussion). 
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There are generally three viable options to consider at the RF. In order of increasing cost these 
are: 1) no cut-out and welded all around 2) cut-out with fillet welding 3) cut-out with CJP and 
ground termination (Figure 6-1). 

 
 (a) (b) (c) 

Figure 6-1 Three Viable Detailing Strategies for RF Connection showing (a) no cut-out and 
welded all around, (b) cut-out with fillet welding, and (c) cut-out with CJP and ground 

termination.   

Cut-out Shape 

The shape of the cut-out should be detailed with careful consideration of the fatigue stress 
concentrations created at the welds and the free edge of the cut-out (if used). The designer is free 
to choose the ideal geometry and there are few limitations since the cut will be made by CNC 
equipment in fabrication. Worldwide consensus has not yet been established for this. The 
optimum shape should satisfy, to the best extent possible, the following conditions: 

• The radius of curvature in each point of the free edge of the cut-out must be large, so that the 
stress concentration at the free edge is low.  

• The dimension of the FB web tooth between ribs must be large, so that the in-plane stresses 
due to shear and bending of the tooth can be minimized. 

• The cut-out must terminate high enough on the rib wall to avoid the highly stressed area of 
the rib and provide out-of-plane flexibility for rib rotations. 

• The cut-out must terminate low enough on the rib wall to prevent excessive distortion in the 
rib walls. 

 
For example, Figure 6-2 shows two possible cut-out details. Figure 6-2(a) shows a non-preferred 
bulkhead detail that has stress concentrations due to abrupt weld terminations. Concerning the 
geometry effects, improvement of that detail is represented by Figure 6-2(b), where there is no 
bulkhead and a “large” radius is introduced to alleviate the concentration effects from the 
geometry of Figure 6-2(a) (as indicated at point “a” in Figure 6-2). To keep higher tooth rigidity 
and minimize flexure in the upper portions of the cut-out, the radius should quickly be reduced 
(at point b).  Note that in Figure 6-2(b), the weld is formed and then ground to match the radius 
transition. As an alternate method, a fillet weld all-around the termination of the radius could be 
used, but the local stresses will need to be carefully analyzed to ensure root cracking of the fillet 
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is avoided.  The fillet welded detail may be considered to be of lesser quality with a higher 
potential for defect-induced cracking at the start/stop or wrap-around.   

    
 (a) (b) 

Figure 6-2 Rib-to-Floorbeam (RF) Cut-out Detail showing Termination of the Floorbeam 
Web Utilizing a Stress Relieving Radius with (a) a Bulkhead, and (b) No Bulkhead 

For in plane stresses, the detail in Figure 6-2(a) is treated using both the well-established weld 
termination fatigue category and toe of weld category.  For the complex stress fields introduced 
by rib rotation, the connection is evaluated according the guidance in Chapter 5.  The transition 
in Figure 6-2(b), as indicated in the figure by point “a”, is equally as poor as the abrupt transition 
illustrated in Figure 6-2(a), but the stress transition is greatly changed. As such, the best 
approach to this fatigue evaluation is to use Level 3 finite element evaluation to find the stress at 
the approach of the transition accurately and optimize the cut-out geometry accordingly. At point 
“b” the accepted technique is to take the principal stress at the toe and cut-out surface and take 
the component of that stress perpendicular to the toe at point “c”, where the resistance is 
presumed equal to that of the base metal (Category A) and the model should give the 
concentrations due to the curved geometry. 

Cut-out Termination 

The cut-out often requires that distortional stresses from the rib wall going into the RF weld do 
not encounter a notch inherent in a double-sided fillet weld detail. The area immediately at the 
transition and some length above can be a CJP weld, with abundant reinforcement on the sides. 
This transition is shown in Figure 6-3. The length of CJP extension depends on internal stresses 
to be quantified by FEA and compared to the experimental database. 

The figure also shows grinding of the cut-out to the extent deemed necessary. Grinding of the 
side reinforcements is also beneficial, but not necessarily needed. Figure 6-3 shows that a 
transition of PJP between the CJP and fillet weld can be used to minimize welding. Grinding is 
required all along the surfaces where it is necessary to maintain a Category A in the base metal. 
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Figure 6-3 Weld Detail Transition from Fillet, to Partial Penetration, to Complete 
Penetration for Smooth Termination of Cut-out at the Rib-to-Floorbeam (RF) Connection 

No Cut-out, Welded All-Around 

When the OSD is fabricated without a cut-out at the FB, increased penetration can be considered 
around the rib’s belly with suitable PJP transitions to fillet welds on the sides.  

Details with Bulkheads 

As mentioned, the use of an internal bulkhead presents additional considerations with respect to 
fatigue that must be addressed, not to mention the added fabrication costs and inability to 
inspect. Since the bulkhead provides a load path for continuity of FB forces through the rib, the 
welds used to attach it must be properly designed for fatigue. Measurements and analytical 
studies show that internal bulkheads primarily carry in-plane force, consistent with expected 
behavior. Since the geometry of the rib does not distort as it rotates or “pushes” the FB out-of-
plane, distortion of the bulkhead would not be expected. 

Laboratory testing has demonstrated that the use of fillet welds for attaching the bulkhead to the 
rib wall should generally be discouraged, unless confirmed by FEA and fatigue evaluation. This 
is due to cracks initiating in the weld root from the lack of fusion zone. Hence, CJP joints, or PJP 
joints with increased penetration, are generally required to ensure fatigue resistance that is 
compatible with the fatigue resistance of the exterior RF weld.  

As previously mentioned, designs should avoid the use of a bulkhead when possible.  When 
deemed appropriate or necessary for use, Figure 4-3 and Figure 6-2(a) illustrate that the 
bulkheads will have concentrations at terminations. This may require welds of increased 
penetration such as CJP or PJP groove welds. The type and extent are determinable from stress 
levels and the use of the Frank-Fisher formula (see Section 5.7.5.1). If a transition is needed in 
the bottom it will likely need a CJP there. As this is more difficult to fabricate, alternate solutions 
should be sought, if the stress concentrations are high at the abrupt bulkhead                  
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transition.  Additionally, consideration must be made for proper bulkhead alignment during 
fabrication (see Chapter 7 for additional information on fabrication).  

6.6. RIB-TO-DECK AT THE FLOORBEAM (RDF)  

To minimize the stress concentrations at the leading edge of the tooth of the FB, the corner of the 
FB should be fully welded to the adjoining elements.  

Practitioners in Asia and in Europe have been using a rat hole at the corner of the tooth at the 
RDF, presumably to avoid crossing welds, as they are believed to degrade the resistance of the 
weld crossed. Experiences in Japan have shown that the rathole introduces distortions when the 
wheel passes, causing crack propagation at the top of the FB from the toe of the weld on the rib 
side.  

Therefore, it is recommended that the weld between the FB web and rib/deck plate in the corner 
be continuous on the outside. The internal bulkhead weld should be 100 percent penetration to 
ensure that failure can start only at the root of the longitudinal RD. The length required in each 
leg is determined by the stresses along it. 

6.7. SPLICES AND DECK JOINTS  

Mill plates are not typically sufficiently large to make up the full length of a box section or OSD 
panel and must be spliced by CJP groove welding. Groove welds for the deck panel splices are 
typically ground flush on the top surface, to provide continuity for the wearing surface. The 
bottom is either ground flush or not, depending on the stress environment to which it is 
subjected. Field splice locations that facilitate placement and removal of backing bars in 
transverse and longitudinal field joints must be designed into the panel layout. 

For deck plate field splices, the longitudinal weld is typically made in an area away from a 
primary wheel path and between two ribs. At this location the maximum stress range 
perpendicular to it would likely be higher than its natural Category C, depending on deck plate 
thickness. Additionally, it may have to be ground smooth for a better resistance category 
(AASHTO Category B).  

Transverse deck plate welds of field splices are typically placed within the range of the rib 
inflection point. The splice plates must be designed for shear and bending. Their fabrication has 
been achieved either with the backing bar remaining or with backing bar removed, depending on 
the stresses at the point where it is located. If left in place, the fatigue resistance of the weld is 
Category D. For this reason and for lack of consistency of performance in the trades, the current 
trend is to remove the backing bar.  

Backing bar removal for the transverse butt weld, which is ground flush at the bottom, requires 
space for access in the rib work. Figure 6-4 and Figure 6-5 show bolted rib splices as practiced in 
the United States, for backing bar removed and backing bar remaining, respectively. 

Alternately, some new field techniques use overhead welding first, to weld the bottom part of the 
plate and to produce inherent backing; then the welding is completed from the top. 
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Figure 6-4 Bolted Rib Splice and CJP Deck Splice with the Backing Bar Removed showing 
the rib sealing plates.  The Rib has been Cut Back to Provide Sufficient Access  

 

Figure 6-5 Bolted Rib Splice and CJP Deck Splice with the Backing Bar Remaining 
showing the rib sealing plates.  The Lower Portion of the Rib has been Cut Back to Provide 

Sufficient Access  

The termination of the rib on each side of the joint has an abrupt transition. To the extent that 
part of the stress in the upper part of the rib will go into the deck plate, there will be a stress 
concentration at that termination. Keeping the bolted splice close to the deck plate and locating 
the splice at points of low moment make the detail viable. But some practitioners prefer that the 
splice not be so close to the RD, lest the stiffness be increased such that more moment 
(transverse) is attracted to the joint with more opening stress in the weld. 

The gap between the rib plate terminations should be kept to the minimum required by 
fabrication or field work (approximately 63 mm to 76 mm [2 ½ inches to 3 inches]). Also, 
flexural and punching shear effects occur at each rib termination. To alleviate these effects, some 
practitioners design a 13mm (1.5in) end return of the fillet weld as illustrated in Figure 6-6, or 
alternately place a CJP weld over the 13mm (1.5in) length. 
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Figure 6-6 Detail of the Rib-to-Deck Weld Return at the CJP Field Deck Splice  

Floorbeam Splices 

FB splices are typically welded when performed in the shop. Field splices are typically bolted. 
When they are bolted, attention must be paid not to increase the out-of-plane stiffness of the FB 
close to the rib cut-out.  To accomplish this, the width and thickness of the splice plate must be 
minimized and the distance from the splice plate edge to the rib cut-out must be maximized, as 
shown in Figure 6-7.  

The FB must also have a rathole to accommodate a backing bar for the longitudinal deck plate 
splice weld, if the longitudinal deck plate splice is done in the field. The stress range in the deck 
plate at that point is usually low enough to be satisfy the Category E detail allowable stress 
range. The joint is shown in Figure 6-7. 

The comments in the previous section regarding the opening for the backing bar in the transverse 
deck plate joint detail is also valid for the rat-hole dimension for the backing bar for the 
longitudinal splices shown in Figure 6-7. These details must resist wheel pressure at 
discontinuities. Therefore, typical rathole details specified in other codes, which have rathole 
length of 120 mm (4 3/4  inch), will likely result in deficiencies. In the event that a welded FB 
splice is needed or desired, the rat-hole detail as shown in Figure 6-8 could allow for a smooth 
cut surface where the weld termination is removed.  

The 64mm (2 1/2 in.) opening is typically required in most cases, but fabricators and contractors 
will seek approval of greater space for greater ease of work. The effects that would results from 
such choices should be weighed before design comprises are made. 
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Figure 6-7 Transverse Floorbeam Web Bolted Splice and Longitudinal CJP Deck Splice 
Minimizing the distance from the Deck Splice and Maximizing the Distance from the Rib to 

the Bolted Splice Plate  

 

Figure 6-8 Transverse Floorbeam Web Welded Splice and Longitudinal CJP Deck Splice 
with Grinding Limits 
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It is noted that the rib splices shown in Figure 6-4 through Figure 6-6 are the standard used in 
American practice. They require the use of a sealing plate, adjacent to the bolted splice to 
prevent condensation inside the rib. Many European practitioners prefer the detail illustrated in 
Figure 6-9 where the rib is mad continuous by using a small rib connector and CJP welding. 

 

Figure 6-9 Preferred Rib Splice Procedure in Europe showing the Welding of the Deck 
Plate and then the Application of the Welded Short Rib Splice with Backing Bars 

In the completed detail the, weld with the backing bars left in place is defined in the AASHTO 
LRFD Specifications as a Category D. A category has not yet been defined for the detail at the 
termination of the backing bar at the deck plate, were rib transverse bending develops.  is the 
detail proposed by Eurocode (ECS, 1992). A V-butt joint, however, is an improved detail. 
Practice shows that the square butt weld is more prone to defects and requires larger root gaps 
than a V-joint. Conversely, the V-butt weld is more expensive to prepare. 

6.8. REDECKING DETAILS  

Differences between OSDs in new bridges and in deck replacements stem from the availability 
of space above the primary FB flange of the existing bridge floor framing verses that of a new 
bridge. These differences may lead to different choices of rib and FBs with or without the cut-
out.  

In terms of practicability, OSDs can span a maximum of 7.62 m (25 ft) within the typical 
available space over the sub-framing. But often the space between the deck surface and the FB is 
limited. Shallower depth ribs can be used if supported over closely spaced crossbeams so that 
they can be accommodated within the available space, with minor profile grade increases, if any. 

In many viaduct structures, the deck spans transversely between stringers which in turn span 
between 15.2 m and 21.3 m (50 and 70 ft), approximately. Supplemental crossbeams can be 
installed to support an OSD which must bypass the primary FB at the bent. An example of such a 
scheme is shown in Figure 6-10. In this example, the ribs are shallow enough to bypass the 
primary FB’s top flange and must have supplemental crossbeams spaced sufficiently close to 
permit shallow ribs to work effectively. The deck plate is yoked to the stringers by virtue of 
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inverted “T”, and the crossbeams are connected so that they are sufficiently flexible to allow for 
rotation of the rib without damage to the crossbeam. This type of design is said to be 
longitudinally constrained. But it could be floating transversely (i.e. allowed to deform) unless 
this causes structural problems requiring restraint in that direction as well. 

 

Figure 6-10 Redecking Example of a Floorbeam and Stringer System with an Orthotropic 
Deck.  The Retrofitted Deck Bypasses the Existing Floorbeams 

In cases where the stringers rest on top of the FB flange and the spacing of the FB does not 
exceed 7.62 m (25 ft), the deck can be rigidly attached to the existing framing in both directions, 
as illustrated in Figure 6-11. 

 

Figure 6-11 Redecking Example of a Floorbeam and Stringer System with an Orthotropic 
Deck where the Existing Floorbeam is Attached to the new Orthotropic Floorbeam 

(Diaphragm) 
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Figure 6-11 shows that the FB constrains the deck transversely and the longitudinal shear 
connector constrains the deck longitudinally. The longitudinal connector is a “hard spot” and 
may require a thickening of the deck plate and/or CJP welding as the adjacent ribs are 
comparably much “softer” (are actually carried by the hard spot) and cannot share load to 
eliminate high transverse deck plate stresses. 

In cases where the required space is available over the bridge FBs, but their spacing is too far for 
the OSD to span (exceeds 7.62 m [25 ft]), intermediate crossbeams can be installed over the 
stringers as illustrated in Figure 6-12. 

An example of this type of design is the proposed redecking of the Verazzano Narrows Bridge, 
where stringers span approximately 15.1 m (49 ft - 51/2 inches). Here, OSD diaphragms are 
being spaced at 3.77 m (12 ft - 41/2 inches) to support an OSD with a 305 mm (12 inch) closed 
rib, intended to replace a filled grid deck that runs longitudinally over crossbeams, spaced shy of 
1.52 m (5 ft) on center and resting on the stringers. This represents a major reduction of 
crossbeam weight as well as deck weight. 

The type of OSD shown in Figure 6-12 is restrained transversely. But it could be restrained 
longitudinally if connected to fixed stringers. This depends on constructability and other design 
issues. 

 

Figure 6-12 Redecking Example of a Beam (Stringer) and Cross Beam System with an 
Orthotropic Deck where the Floorbeam (Diaphragm) is connected to the Longitudinal 

Stringers 

These examples illustrate the issue of available depth. The other main issue is whether the OSD 
can be rigidly integrated to the existing floor in both directions, as in Figure 6-11 or, for practical 
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purposes, should be designed with inherent flexibilities. It is noted that a project where the deck 
was designed to float in both directions did not perform well leading to subfloor failures. 
Remedial measures proved difficult and thus this situation should be avoided where possible.   

When the deck requires diaphragms or sub-floorbeams over stringers (Figure 6-12), the 
diaphragm is typically less flexible than what would be prescribed for new designs.  Regardless, 
the diaphragms must be able to rotate with the rib without great distress either at the web-to-
flange fillet, or at the connection to the stringers. As described in System 4 (see Chapter 2).  This 
motion is driven by the rotation of the rib under the passage of wheels. Additionally, other forces 
can cause a similar our of plane distortion in the diaphragm.   For Example, the transverse 
movement of the ribs that results from live load acceleration or breaking forces can impart a 
rotation at the FB to stringer connection and must also be limited.   

6.9. BARRIER DETAILS  

The design of roadway barriers changed drastically in 1998 when AASHTO LRFD proposed 
new design criteria for barriers. They indicated that the forces of trucks impacting roadway 
barriers were much greater than had previously been presumed. The new AASHTO regulations, 
for the states that would adopt them, required also that the barrier be tested using prototypes on  
actual substrates, deck, slab, or structure that would apply, with a standard truck for the level of 
traffic carried by the highway in question, and code-specified direction of impact. Some bridge 
authorities prefer to use the specified design forces without conducting prototype tests.  

Barriers installed on OSD bridges have been made of both concrete and steel; however, steel is 
the more common material used since it is the least weight and connections are more easily 
made. It is the responsibility of the owner to determine which test level (TL) is applicable to the 
bridge site, and typically they will have standard shapes that have been tested and approved for 
use. However, the barrier and its attachment to the OSD must be shown to satisfy crash test 
requirements or provide improved capacity as compared to an existing crash-tested and approved 
design. It is the attachment that often requires new design and approval. When a minor detail is 
changed on a railing system that has already been tested and approved, engineering judgment 
and analysis should be used when determining the need for additional crash testing (AASHTO 
LRFD). If additional testing is deemed necessary, a simplified pendulum test may be sufficient in 
lieu of a full scale crash test.  

It has been shown that for OSDs of major bridges, which often have to sustain a TL-4 loading, 
the edge of the OSD may have to be reinforced lest it sustain permanent deformation of the deck 
plate edge and nearby ribs. This depends on the longitudinal span between floor supports of the 
deck and spacing of intermediate barrier supports between major deck supports, such that the 
impact load is well distributed longitudinally to two or more restraints. Connections may employ 
a system of thru-bolts to the OSD, or by welding to the surface.  

The forces on barriers that are impacted include a transverse force and a longitudinally-applied 
force at the top of the barrier. Typically, the transverse force is the more critical and more 
difficult to manage. One rational way to manage these forces is to: 
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• Provide adequate distance between ribs resisting barrier forces such that the forces on the ribs 
are sufficiently low to be resisted without yielding of the material. 

• Make the ribs under the barrier sufficiently strong that they would not yield under barrier 
impact. 

• Use a combination of both of the above approaches. 
 
These methods are diagrammatically illustrated in Figure 6-13: 

 

Figure 6-13 Schematic OSD Barrier Connection Detail Showing Supplemental Edge Ribs, 
Restraint Diaphragm, Shear Bolts, and Anchor Bolts to Resist Crash Loading 

The illustration is only a schematic of what has been used in actual projects. For instance, on the 
San Francisco Oakland Bay Bridge, the inboard edge rib is actually a truss within the closed box 
girder (Figure 6-14). The ribs on this bridge span 5 m (16.4 ft), but the truss anchoring the barrier 
has verticals at 2.5 m (8.2 ft). Also, the anchoring bolts straddle the truss top flat plate stiffener, 
instead of the FB, but restraint FBs are more frequently spaced to transfer the moment. Many 
design variations are possible and are left to the ingenuity of the engineer and the specific 
problems they encounter. 

It is noted that Caltrans has tested a steel barrier with specifics similar to that of the San 
Francisco Oakland Bay Bridge. The design performed satisfactorily. This suggests that when 
forces specified in the AASHTO LRFD Specifications are used to design a barrier and substrate 
system, they will likely result in an acceptable design. 
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Figure 6-14 San Francisco Oakland Bay Bridge Barrier Detail showing the Barrier 
Stiffening and Anchorage System  
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7.  CONSTRUCTION 

This chapter provides basic fabrication, welding, and erection guidelines for orthotropic steel 
deck (OSD) bridge components, illustrated by photos of shop and field practices. Discussions 
highlight the controls that are necessary to give reasonable assurances that the final product is of 
acceptable quality. Emphasis is placed on automation to minimize the chances of mistakes. It is 
important that the engineer, fabricator, and erector work together to control the number and 
complexity of the welds, which in turn will decrease the cost of fabrication, and erection. This 
chapter is also intended to assist in development of language that can be used for the 
development of a project special provision. 

7.1. FABRICATION DOCUMENTS 

7.1.1. Fabrication Specifications 

It is customary to address special fabrication needs in project special provisions.  This is also the 
case for OSDs. Most bridge owner specifications in the United States require steel bridges to be 
made to the combination of AASHTO, AWS D1.5 Bridge Welding Code, owner standard 
specifications, and/or any project special provisions. Such specifications cover basic fabrication 
processes, such as cutting, bending, welding, and heating. Generally, D1.5 and owner 
specifications are well-suited to I-girder bridges and (to a lesser extent) to other bridge types, 
such as tub girder bridges, arch bridges, trusses, and orthotropic bridges.  

Special provision items for consideration include: 

• A requirement for a welding quality control plan from the fabricator that addresses items 
considered important to the engineer (items that are identified in the contract plans). 

• Welding procedure qualification and associated production control – the D1.5 method is 
suitable for most orthotropic steel deck (OSD) welding, but the special provisions must 
address qualification of rib-to-deck plate weld (RD) welding procedures. 

• Mock-up requirements, if any. 
• Non-destructive testing. D1.5 covers technique, but the special provision should cover 

inspection frequencies and any special acceptance criteria. 
• Dimensional and distortion flatness tolerances. 
• Pressure test for closed ribs. 
• Assembly requirements and associated procedures, if any. 
• Ultrasonic testing requirements for RD welding depth of penetration verification and 

identification of any “hot cracking”. 
• Transportation requirements, particularly sea transportation requirements. 

It is recommended that owners provide specific performance requirements for items they address 
in the project special provisions. 

Further, owners should apply tolerances judiciously, with consideration of fabrication method 
and performance demand. For example, deck plate flatness is important for bridge performance 
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(ride quality), so a tolerance should be specified; however, rib flatness is not as critical, 
especially considering that fabrication methods will not readily result in a rib flatness issue. 

7.1.2. Certifications and Qualifications 

AISC maintains a program for steel fabricator certification, including a specific bridge fabricator 
certification. Though AISC does not have a specific program for OSD bridges, the bridge 
certification including fracture critical endorsement, should be required as a minimum. Most 
bridge owner standard specifications already require this certification. 

Beyond the AISC certification, the fabricator needs experience with advanced bridges. 
Experience with OSD bridges is advantageous but not necessary. A fabricator with extensive 
experience in advanced bridge structures such as trusses, arches, and signature spans will be 
readily able to adapt to OSD work. 

In some countries outside of the United States, it is customary to require the fabricator to achieve 
ISO 9001 certification. 

7.1.3.Fabrication Plan 

As is customary on many bridge projects, requiring a fabrication plan is recommended. The plan 
should be submitted for approval and address the fabricator’s means of accomplishing the job, 
including: 

• Control lines 
• Welding procedures 
• Nondestructive evaluation (NDE) 
• Heat straightening 
• Distortion control 
• Assembly 
• Loading 
• Shipping 
• Quality plan 

Review and approval prior to fabrication will help ensure everyone approves the procedure 
before the project starts. This can be particularly important on international teams where the 
customary practices and usual specification requirements that the fabricator is used to may be 
different from owner expectations. 

7.1.4. Drawings 

The fabricator’s shop floor operates from shop drawings. Most modern shops increasingly rely 
on electronic data and sketches documents. For example, where previously the shop would read a 
shop drawing to lay out a cutting pattern with soap-stone, straightedge, and tape, today a 
computer numerically controlled (CNC) equipment operator may simply load the appropriate 
program, verify the pattern by viewing a sketch on a monitor, and then proceed with cutting 
without ever looking at a traditional shop drawing or marking steel. Though some fabricators 
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still rely on traditional methods, it is preferred that a fabricator be capable of fabricating an OSD 
bridge with CNC driven equipment. 

It is customary in the United States for the fabricator’s shop drawings to be reviewed by the 
owner for approval prior to fabrication. The scope and depth of this review varies from owner to 
owner and engineer to engineer. For OSDs, the engineer and contractor should take advantage of 
this opportunity to ensure that the fabricator will execute fabrication as the designer and owner 
originally intended. As with all bridge projects, it is important to handle the review process 
expeditiously to keep a project on schedule. Experience has shown that the use of “electronic” 
shop drawings is greatly encouraged to help achieve this expedition. 

7.2. FABRICATION SEQUENCE 

For OSD bridges, many fabrication operations are similar to those used in fabrication for other 
bridge types, but deck plate and rib fabrication is unique. The fabrication sequence is basically 
the same for box girder and deck panel systems. Components are fabricated from steel plate, 
except that diaphragms and FBs may be made from split W sections. 

Steel is ordered as shown on the design and detail drawings. ASTM A-6 is the standard 
governing specification for steel plate quality; it is referenced for quality by structural steel plate 
specifications such as ASTM A709. The fabricator may consider ordering the plate to tighter 
flatness tolerances than the ASTM A-6 tolerances, but this could prove cost-prohibitive. 

When steel is received it is inspected, verified against material test reports, and stored. Generally 
the fabricator will want to use the steel as quickly as possible.  If the steel must be stored for an 
extended period, it is to be suitably protected to minimize remediation later.  The fabricators may 
pre-blast the steel to remove loose mill scale, rust, and other deleterious material to facilitate 
welding. Alternately, the fabricator will clean local weld zones closer to welding time.  

The steel will then be cut to size and marked. As previously noted, it is common for both of these 
operations to be conducted by CNC equipment, particularly for advanced structures such as OSD 
bridges.  Cutting is by plasma or oxyfuel. Oxyfuel is more conventional and is suitable for all 
structural steel thicknesses. Plasma is faster and produces a cleaner cut, but is only efficient up to 
about two to 64mm (2 ½ in.), depending on the system. Cutting is likely to be over water to catch 
smoke and reduce noise, in particular for plasma. 

Marking will most likely be zinc but could also be plasma. Like the cutting tool path, the 
marking paths are programmed with the CAD/CAM system. The fabricator uses the marking to 
lay out locations for members, tack welds, support components, and rib edges. 

The ribs are usually formed on a large press-break to the specified shape and length. The ribs can 
also be rolled into shape, but this practice is less often employed because it is more difficult to 
achieve suitable tolerances with this method. Depending on the number of dies that must be 
used, rolled ribs can vary considerably. However, either method is considered acceptable when 
the proper tolerances are observed. It is preferred to form the ribs full length, if the press has the 
capability.  Alternately, shorter length ribs can be formed and spliced by welding with a ground-
flush CJP joint without difficulty. In such cases, ultrasonic testing can readily be used to verify 
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quality. Diaphragms and end plates are welded to the inside of the ribs after welding, but before 
being fit to the deck plates.  

The plain deck plates are welded into larger pieces and moved to the rib fit-up station, where the 
ribs are both aligned and the RD weld joint gap is minimized before being tack welded to the 
deck plates.  

The rib-deck plate subassemblies are moved to the welding station where the partial penetration 
RD welds are made. Placement of the ribs on the deck plate must be controlled such the ribs 
align with the openings that are cut into the FBs. There, subassemblies can be preloaded before 
welding so that the panels come out relatively flat and straight after welding. This will reduce the 
amount of heat straightening required. After welding, the deck panels are heat straightened to the 
specified tolerances, if necessary.  

The subassemblies are moved to the final assembly area to be assembled into the final shipping 
pieces. At this time the beam support structure is welded to the deck plate assemblies and all 
shop welds and bolted connections are checked for alignment. The shipping pieces are placed 
into a lay-down assembly. Any attachments that have dimensions that are critical for alignment 
from one assembly to the other are finalized at this time. The field weld joints are fit-up for 
alignment and are also checked for weld joint tolerances at this time. The rib bolted splice joints 
are also checked for fit during assembly. 

In summary, an overall schematic of the fabrication process is presented in Figure 7-1. 

 

Figure 7-1 Fabrication Sequence of Orthotropic Deck Panels including Forming of the 
Ribs, Attachment of the Ribs to the Deck Plate, Fabrication of the Floorbeams, and finally 

Attachment of the Floorbeams to the Ribs and Deck Plate  
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7.3. FABRICATION PROCESS 

OSD fabrication uses many of the same processes as those used in fabrication of more common 
bridge types, such plate girder bridges, arches, and truss, including the following: 

• Material control (use of MTRs) 
• Marking 
• Cutting 
• Fitting 
• Welding 
• Drilling 
• Assembly 
• Painting 
• Shipping 
 
However, there are some inherent differences in OSD bridges that affect fabrication processes.  
This includes: 

• Thinner plates mean that more coil steel could be used. For example, it is most likely that 
ribs will be made from coiled steel. 

• Thinner plates mean that more welding distortion may result. This in turn indicates more heat 
correction will be necessary and also motivates the use of cooler welding processes, such as 
GMAW instead of SAW. 

• Plasma cutting being very prevalent. Plasma is a faster, cleaner, and more consistent means 
of cutting steel. However, present technology faces a practical limit of 2 inches in thickness 
which is satisfied by most OSD plate materials. 

• Water spray may be used during cutting to minimize distortions. 

Proper methods of maintaining flatness as OSDs are fabricated is required. 

7.3.1. Distortion Control 

Generally, distortion control for OSD bridges is the same as for other steel bridges, with the 
important exception of achieving ride-quality flatness in the deck panels (see Section 5.2.2). 
Flatness in the panels may also be needed where the OSD serves as a compression flange in a 
box girder, to provide structural stability. Geometry control is also important to provide 
alignment for field splices, which are often welded. Because the deck plates have a significant 
amount of welding, and especially because this welding is only accomplished on one side of the 
deck plate, the deck plate distorts from welding. The fabricator will pre-bend deck plate 
subassemblies to minimize distortion prior to welding and then use heat correction to ensure 
tolerances are met.  

There are four significant issues to address for distortion control:   

1. Amount and type of preloading to be used. 
2. Placement of the tack welds toward the face of the weld joint or in the root. Both approaches 

raise issues that must be addressed. 
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3. What combination of preloading before welding and heat straightening after welding should 
be selected to flatten the deck panels. 

4. Risks associated with the development of hot cracks during welding. 

There are also four basic approaches that can be used to achieve acceptable deck plate flatness 
after welding: 

1. Preload the panel so it comes out flat after welding. 
2. Preload the panel to the extent necessary so the panel needs only a limited amount of heat 

straightening. 
3. Use no preloading and use only use heat straightened to flatten the panel after welding.  
4. Counterbalance with heat during the weld process. 

All methods have limitations and risks based on the results of past OSD projects that should be 
seriously considered when selecting and approving the methods and technologies used for 
making the tack and RD welds. In practice, method No.2 is the most prevalent because it is 
reasonable to assume fabricators will have to do some heat straightening, even if method No. 1 is 
used. That is, it is almost impossible to predict the actual amount of preloading that will result in 
the OSD panel being flat after welding. See Figure 7-2 and Figure 7-3 for examples of 
preloading and pre-bending to facilitate fabrication. Each preloading method is described below. 
Figure 7-3 shows pre-bending in the transverse direction, but it is equally appropriate and 
possible to pre-bend in the longitudinal direction (or both directions), depending on the 
circumstances.    

The reluctance to allow for heat straightening in the panel fabrication stems from speculation that 
the process will degrade the fatigue resistance of the welded connections. However, the research 
into this issue by Sim and Uang (2007) was inconclusive. The work by Connor et. al (2008) 
found that damage and repair cycles in steel bridge girders did not have any appreciable effect on 
the fatigue life. 

 

Figure 7-2 Preloading is Used to Help Control Distortion by applying Weights to the 
Inverted OSD 
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Figure 7-3 Pre-bending by Clamping the OSD to a Curved Assembly Bed is used to Offset 
Deck Panel Distortion due to Welding 

Method No 1:   Preloading the panel to achieve flatness after welding with no heat straightening 
required 

This method locks stress into the panel during both fit-up and welding and therefore is the 
riskiest. One of the problems associated with this is that the ribs are fit to the panels by force and 
tack welded in place, locking that force in the tack welds. After fit-up, the assembly is moved to 
the welding station for RD welding and preloads are applied to the extent necessary so the panel 
will be flat after welding. Preloading may be applied using temporary weights that stay on the 
panel during welding or by the use of wedges, shims, and jacks that stay in place during welding. 
Both ways add additional stress to the tack welds. Another method for reducing the total stress in 
the tack weld is to apply heat to the outside of the rib during welding.  This counters the weld 
shrinkage stresses.  

In Europe, panels are preloaded to a pre-weld configuration before tacking the ribs to the deck 
plate. They also apply heat to the outside of the rib, as described above, to lower stress in the 
tack welds during welding with good results.  

Method No. 2:  Preloading the panel so it requires a limited about of heat straightening after 
welding      

The preloading can be less if heat straightening is used after welding. Lower preloading results in 
lower residual stresses and less demand on tack welds. Heat straightening the panel after welding 
will place residual stresses in the entire RD and not just in the tack welds. The preloading 
methods can be the same as those used in Method No. 1, only with less magnitude.  
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Method No. 3:   No preloading of the panel before the welds are made  

This method creates the least risk to the panels during welding because the only stresses placed 
on the tack weld are those holding the rib in place during fit-up and tack welding. This same 
stress will also be present for the other methods because the method used for closing the root gap 
to acceptable limits is the same for all distortion control methods. Using this method to straighten 
the panel distributes the stresses throughout the panel because no preloading has been used. 

Method No. 4:  Counterbalance with heat during the weld process 

This method equalizes the effects of the weld with an equal and opposite heat input.  The thermal 
expansion of the preheated components pre-forms the ODS such that the deck cools to the proper 
shape.  Although this method, when properly applied, can reduce or help to eliminate locked-in 
stresses from the cooling process, controlling the heat input to control local distortions and 
maintain the proper root gap is difficult.  As such, preloading is often still required for this 
method. 

To achieve the proper proportions in the final, completed panel, some fabricators have used deck 
plates with extra (sacrificial) material past the nominal dimensions of the assembled piece.  This 
extra material is then trimmed off after welding to set the final geometry of each completed 
panel.   

7.3.2. Tack Welds 

Tack welds can become a critical fabrication step for OSDs.  When proper procedures are 
observed, they are a vital tool that greatly aid proper fabrication.  However, two things can 
happen with respect to the tack welds during preloading and welding. First, some of the tack 
welds may crack from thermal and preloading stresses created when the RD weld is made.  
Second, the rib may move minutely when the tack weld is remelted, creating a serious potential 
for hot cracking. When the tack weld is placed in the weld joint (root or face area), the extent to 
which it is remelted during welding, and how the preloading is applied to the section both play 
an important role in the seriousness of the risks. For example, if the tack weld is in the front of 
the weld joint, it will be remelted 100 percent during welding. Conversely, if the tack weld is 
placed in the back of the weld joint, it may not totally remelt.  Furthermore for this condition, 
any lack-of-fusion or other discontinuity that exists in the tack weld may not be removed because 
the tack weld is not totally remelted. Another concern is that tack welds that crack during 
welding and are not remelted will have cracks buried in the root of the weld once finished. In 
either case care must be taken to make sure that the tack weld area is sound after the RD has 
been made.  

7.3.3. Splices 

As with any bridge project, effective achievement of splices for field-bolted and field-welded 
connections is essential for a good OSD project. The technologies and methods used by 
fabricators will vary depending upon the fabricator’s equipment, experience, and skills. For 
example, the fabricator may use traditional ream-assembly or CNC drilling, drill templates, 
and/or fit-up fixtures (Figure 7-4) to build connections. Methods alternate to ream-assembly may 
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preclude the need for shop assembly; if so, the fabricator should demonstrate this through check 
assemblies. 

 

Figure 7-4 Fit-up Fixtures such as the One Shown for a Box Girder are Used To Ensure 
Alignment without Assembly 

7.3.4. Internal Bulkheads  

The internal bulkhead is welded inside the rib before the rib is positioned and welded to the deck 
plate. Afterwards, the FBs are positioned over the ribs but without any possibility of visual check 
of alignment between the internal bulkhead and the FB web with the deck plate in place. 
Experience indicates that considerable misalignments occur from time to time. In the United 
States, panel lengths of 18.3m (60 ft) have been used on redecking projects. This suggests that 
shrinkage caused by RD welding can be a source of misalignment between the diaphragm and 
the bulkhead. Misalignment is a defect that introduces relatively high additional secondary 
stresses and may have a large influence on the fatigue life of the detail and proper procedures are 
necessary to eliminate it. 

7.4. WELDING 

AWS D1.5 addresses most procedure and workmanship requirements.  However, any missing 
considerations or requirements should be addressed in the contract special provisions. As 
required by D1.5, no welding should be conducted without an approved procedure. 

Preproduction weld trials should be conducted to develop procedures for special applications and 
to demonstrate fabricator proficiency. This specifically needs to include RD welding, but should 
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also include any non-standard joints or processes. As described below, the project specifications 
should address requirements for RD welds. (D1.5 already provides a path for other non-standard 
processes.) The trials should demonstrate that the fabricator’s process will consistently achieve 
the required value (such as minimum penetration) in fabrication. 

Under the preproduction trials, the fabricator should develop the procedure that is desired and 
will then conduct the D1.5 Procedure Qualified Record (PQR) testing for use in developing the 
final actual welding procedure specification (WPS). 

7.4.1. Rib-to-Floorbeam (RF) 

The various types of details used for this joint are discussed in detail in Section 5.7.5 and Section 
6.5. This detail require substantial effort in terms of manual welding and grinding As fabricators 
in the U.S. have typically executed this weld by manual methods. However, it is evident that 
there is potential economy for robotics to be used here due to the repetition involved. Projects of 
larger size may justify the investment into robotics.  

Where no cut-out is used and the rib is welded all-around to the FB, particular attention should 
be paid to the weld at the bottom portion of the rib as this is where cracking is most probable.  
Where a cut-out is used with a smooth termination, current practice is to fabricate this weld as a 
CJP ground flush with the rib (Figure 6-3).  A fillet weld is substantially less time consuming, 
but the wrap-around or start/stop must be executed with care and checked for quality.  In both 
cases, the quality of the weld in this transition region is important as this is the most probable 
location for cracking when a cut-out is used.   

In all cases, specifications for the welds follow those set forth by D1.5. The project special 
provisions need to indicate, by reference to a standard, the geometrical condition of the finished 
surface and, if required, the desired hardness, depending on the type of system selected for this 
connection.   

7.4.2. Rib-to-Deck Plate (RD) 

It is not possible to achieve a conventional complete penetration weld where closed ribs are 
joined to the deck plate because there is no weld access to the back of the joint from inside the 
rib. Therefore, it is customary to join ribs to deck plates with a one-sided PJP weld as discussed 
in earlier chapters. The fabricator will accomplish welding in the means that is best suited to 
their equipment, but will most likely be some form of mechanized process (for example, see 
Figure 7-5). 
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Figure 7-5 Fabricators Automate where Possible to Improve Productivity and Quality such 
as Using the Gantry as shown which Allows Three Ribs o be Welded at One Time 

7.4.2.1.RD Welding Procedure 

The fabricator will develop a procedure that best accomplishes the performance demand of the 
weld, including joint design (size and angle of bevel, size of root face), welding process for 
production and tack welding, electrical parameters, travel speed, consumables, and number of 
passes. It is important to give the fabricator flexibility in accomplishing the RD weld because 
many factors can play into the effectiveness of this welding. Example of a flexible procedure 
includes: 

• The fabricator should be allowed to select a preferred welding process. This will likely be 
SAW or GMAW. Due to the high heat input associated with SAW, joint bevel will be 
smaller; in fact, thinner ribs may require no bevel preparation, though care must be taken not 
to melt-through or to drive the weld too deep into the base metal in an effort to melt off the 
corner of the rib plate. Conversely, GMAW is cooler and would likely require a bevel in 
order to achieve proper penetration. However, since it is a cooler process, GMAW may result 
in less distortion and therefore may require less heat straightening. 

• The fabricator should be allowed to prepare the RD joint on the rib plate as necessary to 
accomplish the required penetration and also ensure a suitable profile. Hotter processes (like 
SAW) have more penetration and therefore can tolerate a larger root face area, more root 
gap, and less beveling than cooler processes (like GMAW). 

• The bevel will impact the quality of the weld on the backside. If the fabricator uses a bevel 
that is too large and does not provide sufficient root face area, the weld will readily burn 
through or melt through behind the rib wall. 
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• The procedure must identify essential variables and associated limits that must be respected 
by the welder to ensure weld quality. One of the primary reasons for not achieving 
repeatability during welding is failure to use the original welding parameters, including wire 
position and angle. 

7.4.2.2. Procedure Development 

The fabricator will achieve proper RD welds by developing a procedure that will achieve the 
performance demand, including penetration and profile requirements. Because successful 
welding is a function of the rib thickness and rib slope, it may be necessary to redevelop a 
procedure even if the fabricator has conducted OSD work before. See Figure 7-6 through Figure 
7-8. The fabricator should: 

• Demonstrate that the procedure will be effective by conducting trials and examining 
macroetches. 

• Set parameters and then conduct D1.5 PQR testing in accordance with the appropriate 
Clauses in the AWS D1.5 Code.  

• Write the final procedure and submit for engineer approval, if PQR testing is successful. 
 
Proper procedure development and implementation is critical. Achieving the proper RD depends 
on a number of factors.  First is wire placement, including: 

• Angle of the wire transverse to the joint. 
• Lead angle (drag). 
• Distance that the wire projects into the weld from the face of the rib. 

The second factor is oversized wire diameter which can result in: 
 
• Poor weld profile, including overlap, undercut, and oversized reinforcing. 
• Lack of fusion because the fabricator may speed up to correct profile issues. 
• Poor width-to-depth ratio and therefore center bead cracking. 
• Excessive penetration and melt-through. 

The third factor is undersized wire diameter which can result in: 
 
• Inadequate weld size. 
• Increased passes, which in turn increases distortion. 
• Undersize reinforcing. 
• Overlap due to slower travel speed in attempts to include weld size. 
• Undercut. 
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Figure 7-6 The Fabricator will Develop a Procedure for Rib-to-Deck Welding as the 
Worker in the Photo is Testing 

 

Figure 7-7 Macro-Etches Like the One Shown Here are Used to Ensure Weld Penetration 
is Suitable, as well as Other Weld Requirements, Such As Width-To-Depth Ratio and 

Profile 
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Figure 7-8 Wire Angles and Diameter are Critical for Suitable Rib-to-deck Welding.  The 
Picture shows a Demonstration Piece with the Wire Size and Angle Prepared 

7.4.2.3. Proficiency Testing 

In the course of developing the welding procedure, the fabricator must demonstrate the following 
proficiencies for accomplishing the RD partial penetration welds: 

• Required penetration (for PJP joints). 
• Melt-through does not exceed specifications. 
• No blow-through. 
• Tack weld remelting (consistent with procedure requirements). 
• Welding both sides of the rib at the same time. 
• Mechanized or fully automatic welding. 
• Producing a suitable weld profile per AWS D1.5. 
 
Depending on the specifications, it can take a fabricator a number of months to develop the 
proper welding procedure on their first OSD project. From that time forward, the development 
process should be lessened and will depend on how much the RD weld configuration changes. 

With respect to the current specifications, the AASHTO LRFD Specifications prior to the 
revisions accepted in 2011 required a one-sided PJP with 80 percent target penetration. The 
revised current requirement, however, allows a minimum penetration of 70 percent for the weld, 
providing the fabricator a target of 80 percent, but not penalizing for failure to meet the 
requirements exactly at every location. Other codes are slightly different. For example, the 
Eurocode (ECS) and Japanese code (JRA) allow 70 percent penetration. Further, other codes also 
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allow simple fillet welding, though this likely does not satisfy fatigue design requirements.  More 
discussion on the updated requirements is presented in Chapter 6. 

7.4.2.4.Pre-production Weld Trials 

Preproduction weld trials are an important part of any OSD project. The cost impact associated 
with repairing production welds is magnified well beyond what is seen on other forms of bridge 
construction because of the amount of welding on an OSD bridge. On any bridge, the number of 
weld defects will be directly proportional to the total amount of deposited weld metal, and since 
the length of welds on an OSD are greater than what is seen on other bridge types, the chance of 
having more weld defects is significant. Identifying and eliminating the problems discovered 
during the preproduction weld trials will have a major impact on reducing the cost of fabrication. 

Full Scale Weld Mock-Ups  

OSD fabrication requires full-scale weld mock-up trials (see Figure 7-6, not to be confused with 
Level 1 Design). These trials will verify that the work can be performed as described in the 
Contract Specifications. That is, problems occur during fabrication that cannot be anticipated and 
the use of full scale mock-ups allows the contractor to find and eliminate these problems so they 
do not occur during production. For RD welding, full-scale mock-ups demonstrates that the 
fabricator’s method of welding works with his method of panel assembly and distortion control. 

Start of Shift Production Weld Macroetches  

Start of shift production weld samples are used to verify that the welding is completed the same 
way that was approved in the preproduction weld trials. This is required to be done daily at the 
start of each shift on the RD partial penetration welds by each welder. When making the 
orthotropic RD welds, it is important that the welding operators demonstrate that they have the 
automated welding machines and guidance systems adjusted properly on a test panel before the 
start of production welding.  Hence, when production welds are done, there is reasonable 
assurance that they will comply with the quality requirements spelled out in the Contract 
Specifications. Taking macro-etches of rib extensions on a regular basis is an effective way to 
verify that the welding is being completed in accordance with the approved welding and 
fabrication procedures. 

7.4.2.5.Fit-Up 

Good, consistent fit-up is essential for consistent weld quality; this includes weld penetration and 
weld profile. Jigs may be used to help accurately position the ribs to the deck plate (Figure 7-9). 
In order to achieve proper penetration, the root face fit-up gap is relatively tight. Experience 
shows that 0.5 mm (0.020 inch) is necessary and provides satisfactory results.  0.5 mm (0.020 
inch) is also the maximum allowed by AASHTO LRFD.  The fabricator determines this gap as 
part of the procedure development. The actual root face gap that is used for production welding 
is established during the procedure development tests. Note that experience has shown that larger 
gaps have been shown to create excessive melt-through and blow-through. 
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Figure 7-9 Fabricators use Jigs Such as the One Shown to Help Achieve Proper Alignment 
in the Ribs 

7.4.2.6.Tack Welding 

Good tack welds are particularly important in RD welds because they must be large enough to 
hold the rib in place against pre-restraint (if any) and the advancing production welding 
equipment, but they must also be minimized to avoid compromising the weld profile. 

It is desirable, though not necessary, to entirely remelt the tack weld with production welding. 
The more the tacks remelt, the less likely they are to compromise weld profile and the less likely 
they are to trap slag or cause lack of fusion at the root (Figure 7-10). Tack remelting can be 
facilitated by grinding tacks.   

Further, as mentioned in Section 7.3.2, tacks that do not remelt may result in unique problems. 
Tack welds inherently do not have complete fusion at the start and stop. Further, depending on 
the technique and proficiency of the welder, there may also be lack of fusion along the length of 
the tack. Complete remelt of the tack is the most desirable condition. The likelihood of remelting 
the tack depends on many factors, but especially the process used for the cover pass(es). SAW is 
much more likely to remelt a tack (and thereby eliminate tack weld lack-of-fusion) weld 
completely than cooler processes, such as GMAW and FCAW. 
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Figure 7-10 The Tack Welds Under this Cover Pass Were Re-melted, Yet Their Location is 
Still Obvious (This Condition is Acceptable because Profile Meets Code).  The Larger Tack 

Welds Can Influence the Weld Profile 

Tack welds are placed manually by a hand-held welding gun, which makes it difficult to place 
the weld exactly in the root of the RD partial penetration weld. Grinding tack welds is necessary 
if the cover pass is not intended to remelt the tack, because otherwise travel speed would need to 
be unreasonably increased. At such an increased rate, it will be difficult for the PQR to pass. 
However, thicker tack welds must be ground to a thickness that is compatible with the overall 
welding parameters.  

In procedure development, the fabricator should demonstrate the suitability of tack welding 
process by taking macroetches through the tack welds. If the tack welds are remelting entirely, 
no further consideration is necessary. But if the tacks do not remelt entirely, further macro-etch 
examination must demonstrate that lack of fusion does not occur along the sides and at the starts 
and stops. The likelihood of remelt is a function of many things, but in particular the thickness of 
the tack and the process used for the cover pass. A SAW cover pass is much more likely to 
remelt the tack than a GMAW cover pass. 

Where the tack weld is located within the weld joint is important. Panels are preloaded or 
prebent so they are as flat as possible after welding, and while this practice helps to reduce heat 
straightening, it puts more strain and therefore demand on the tack welds. This increases the 
likelihood that tacks will crack as RD welding progresses along the length of the panel, as well 
as the associated risk that ribs will move and cause defects. 

7.4.2.7. Penetration, Melt-Through, and Blow-Through 

Generally PJPs are avoided in bridge design and construction because, depending on the joint 
configuration, associated stiffness, and the applied stress, PJPs can be a fatigue concern. In fact, 
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the RD weld is an exception to the provision of AWS D1.5 not allowing PJP welds at T-joints 
subjected to tension in the root. This is why the penetration, melt-through, and root gap must be 
carefully controlled in production.  

Even with stringent project special provisions, prequalification of the welding procedure, 
verification tests, and quality controls in production, melt-through will occur from time-to-time 
and has been used as a reason for rejecting a given weld process or panel. However, as discussed 
in Chapter 6, it may not necessarily be detrimental to the weld performance (Sim and Uang, 
2007). Hence, it is reasonable to set a tolerance on this parameter as well.   Note that a distinction 
should be made between melt-through and blow-through.  In melt-though, a small amount of 
weld material oozes into the backside during the welding process.  With blow-through, the weld 
material spatters. Both of these conditions may create sites of potential crack initiation and 
should be limited. Furthermore, it has been demonstrated that with proper welding procedure, 
blow-through can be avoided.  Hence, blow-through should not be tolerated. As discussed in 
Section 6.4, a moderate amount of melt-through is permissible. See Figure 7-11 for an example 
of melt-through without blow-through. 

 

Figure 7-11 Melt-Through as Shown in this Picture is a Sign that the Joint Landing May 
Be Too Small 

From a practical point of view, melt-through and blow-through can only be verified in 
production monitoring since it is not possible pragmatically (based on current technology) to 
examine the inside of the ribs once the welding is complete. Ultrasonic testing cannot establish 
the presence or lack of melt-through or blow-through. 

In order to establish and demonstrate a proper procedure, a welding procedure should be 
determined with a mock up prior to any fabrication. The mock up is intended to be of an 
appropriate size and scale relative to the complexity of the new construction and is specified by 
the engineer. When completed, the mock up is cut for macro-etching of the weld. The 
macroetching need only demonstrate the extents of the weld showing the penetration, size, and 
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throat, as shown in Figure 7-12. Additionally, in order to verify consistency of the weld and 
complete remelting of the tack weld, 20 percent of these etchings must be taken at a tack weld 
locations. 

 

Figure 7-12 Rib-to-Deck (RD) Weld Detail showing the Proper final Dimensions for the 
Weld Relative to the Rib Plate Thickness 

7.4.2.8. Production Monitoring 

RD welding must be monitored over the course of the project to ensure proper weld quality is 
maintained, particularly for weld penetration. The best way to track it is to require periodic 
macroetches and ultrasonic testing. As it is a destructive process, macroetches are conducted on 
pieces that will not actually be part of the bridge. It is important, however, that the test pieces 
represent that actual work adequately. Mock-up RD weld specimens can be made, or an 
occasional actual production rib can be made longer than required (and welded to a run-off tab 
extended beyond the edge of the actual piece).  

Ultrasonic penetration testing (UT) should be conducted throughout the fabrication process for 
each job. The UT quality control procedures can be reduced over time using statistical process 
control and an appropriate confidence interval. Such reduction is prudent since UT testing is time 
consuming and conducting more testing than is necessary causes unnecessary delays and cost. 
Additionally, note that ultrasonic testing is accurate to about 10 percent for depth verification, 
which translates into about 1 mm (0.04 inches). Hence, a testing procedure can be established by 
verification of the depth check from UT to macroetches. 

7.4.2.9.Weld Procedure Qualification (PQR) and Specifications (WPS) 

PQR and supporting WPS are required to give the engineer and owner reasonable assurances that 
the fabricated welds will perform as intended. The contractor is responsible to perform PQR 
testing as described in the AASHTO/AWS D1.5 Bridge Welding Code to establish a basis for the 
WPSs that will be used in production welding. Additional performance testing will be specified 
by the engineer to give assurances that non-standard weld joints, such as the RD welds, will be 
acceptable and comply with the standards in the Contract Specifications. 
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7.4.3. Field Welding 

Field welding is useful and often essential for OSD construction. There are negative perceptions 
about the suitability of field welding for bridge construction.  These are based on instances where 
improper procedures were either specified or implemented. Field welding has been dismissed 
out-of-hand in the past, but it has been routinely with confidence. For example, in Texas and 
Georgia, girder flanges and webs are commonly welded together in the field (in lieu of a bolted 
splice). The rail industry also frequently uses field welds with much success.  The keys for 
achieving good field welding are to provide a suitable environment, including protection from 
wind, and to conduct sample radiographic testing (RT) or UT for full penetration welds. 
Generally UT is more prevalent than RT in OSD fabrication and has been proven to be suitable. 

It is most common to join OSD plates by full penetration field welding, particularly because 
bolted connections interfere with the deck surfacing. To help ensure quality and facilitate 
production, these full penetration field welds are accomplished primarily from the top side of the 
deck. A steel backing bar may be used. The backing bars should be attached in the field to 
facilitate fit-up and should be attached in the throat, as shown in Figure 7-13. Ceramic backing 
bars have been used as an alternate to steel internationally, but are not as common in the United 
States 

 

Figure 7-13 Typical Deck Plate Field Weld  

Deck welding should be accomplished with an automatic process to the most extent possible. 
SAW is well suited to welding in the flat position required for deck welding from the top side, 
though other traditional bridge processes are also acceptable, as shown in Figure 7-14. However, 
SAW can only be used from the top. If a backup bar is used, all welding can be done with SAW 
from the top, but often the back-up bar must be removed. Alternately, a double-bevel joint can be 
used, with an alternate process used to weld the back-side overhead. For non-flat position welds 
like this, FCAW is the process most preferred by field welders, though some welders prefer to 
use SMAW to get better penetration.  

In order to avoid melt-through when placing the flat SAW, the contractor may need a small 
semiautomatic first pass after back-gouging the weld to sound weld metal. This may be 
necessary to prevent the first SAW pass from melting through the weld joint. If a backup bar is 
used and removed, the operator should be qualified, including a qualification test to demonstrate 
proficiency. 
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In redecking projects, longitudinal splices between OSD panels are welded while traffic is 
maintained on nearby deck work already erected. It is necessary to yoke the decks at 
intermediate FBs and at temporary connections to ensure that no relative displacement occurs 
during the production of such welds. 

 

 

Figure 7-14 Field Welding of the Transverse Deck Plate Joint during Construction 

7.5. SHIPPING AND HANDLING 

The transportation method selected for an OSD depends on whether it is a new structure or a 
redecking project. Transportation to the bridge site of new box girders typically occurs by 
waterway, if the boxes are deeper than overpasses allow. Long overland spans require special 
attention. On redecking projects, OSD widths depend on construction staging coordinated with 
transportation routes. Excessive movements of elements during transport can create unnecessary 
damage to the decks. Shipping across oceans requires special attention. Furthermore, if part of 
the wearing surface is shop installed, damage prevention practices are necessary.  

Salt deposits and brine also cause concerns related to corrosion of OSD panels. Thus, salt spray 
should be rinsed off from all surfaces exposed during transport to sufficiently remove all brine or 
salt deposits. Alternate methods for washing the panel can be specified by the engineer if 
additional requirements are necessary. 

7.6. ERECTION 

Erection of OSDs is similar to other steel bridge structure erection. In recent experiences with 
major bridge redecking, OSDs were laid down as fast as 122 m (400 ft) of lane per night 
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(without field welding). This was achieved with prior removal of the existing deck within a 
permanently closed lane and with necessary preparation of the existing FB. The desirability to 
place decks at night and to allow peak traffic to flow without any lane closures have been 
seriously considered by bridge authorities where major bridges were being redecked. Because of 
nightly mobilizations, Nondestructive Evaluation (NDE) time, and deck removal time, the time 
for deck installation and welding was limited, in order to reopen the lane again during peak 
traffic. On long-span bridges, deck replacements using OSDs have been conducted with closed 
lanes for optimal cost efficiency and shorter duration of construction. For short spans where 
detours are permitted to adjacent streets, OSDs offer superior construction erection time and 
quick return to normalcy.  

Fit-up attachments such as alignment lugs are required for aligning large field sections (Figure 
7-15). Such hardware requires temporary welds. Negative perceptions are common about 
temporary welds, but if they are accomplished and removed properly, they do not create a 
condition any worse than the adjacent field weld.  Additional information on erection can be 
found in an American Bridge publication by Callaghan (2010). 

 

Figure 7-15 Temporary Fit-Up Lugs are Necessary for OD Construction.  Tensioning Rods 
Bridge Two Sections to Pull Together and Align the Adjacent Panels   

OSDs are being used more and more as components of wide box girders in which the width 
tolerances in individual panels and poor control of longitudinal deck plate joints may cause 
geometric fabrication “errors” in total width, which create difficulties in abutting adjacent box 
elements.  

7.7. INSPECTION AND TESTING 

Tests and inspections are necessary to give reasonable assurances that the quality of the product 
is in conformance with the contract documents. Some of this has been touched upon in the 
previous sections.  This section (and the chapter in general) are based on the premise that the 
quality of a product is controlled by the specifications and not by NDE inspections after the work 
is done. Fabrication/erection inspections and tests shall be performed as necessary prior to 
assembly, during assembly, during welding, and after welding, to ensure that materials and 
workmanship meet the requirements of the contract documents. Inspections and supplemental 
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tests must be specified in clear and concise terms so there is no misunderstanding regarding what 
is required. NDE procedures should be developed for the welds being tested. 

Due to the critical nature of the proper fabrication of the RD weld, a special UT procedure 
should be developed for monitoring the depth of penetration. Experience has shown that it may 
take up to 50 test trials on mock-up weldments to develop the proper procedure. UT will not give 
a precise penetration value; rather, it will read the depth to + / - 5 percent, but coupled with 
production macroetch testing, this will be enough to ensure adequate penetration. More 
importantly, UT will discover the presence of any hidden hot cracking that may occur, which has 
proven to be very costly if left undetected. Retrofits of miles of welds in the field are vastly more 
expensive than catching it during production.   

The phased array UT technique may be suitable for checking penetration depth to be used to 
determine the depth-of-penetration of the RD. Based on other applications of phased array, the 
technique looks promising for the RD depth check. However, its use is not yet customary, so a 
suitable procedure must be developed and verified. Further, research has not been conducted to 
demonstrate suitability for checking lack of fusion, so it may be prudent to be specific about the 
UT method for this application. A detailed UT testing procedure should be required and the 
procedure needs to demonstrate that the desired accuracy is achieved on a consistent basis. 

Continual production monitoring of penetration depth is prudent. This can start at a high rate of 
monitoring 15 to 25 percent of the welds and then taper off over time as confidence improves, 
but it should not taper off to zero.  

All CJP field welds should be inspected 100 percent by UT. 
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8.  INSPECTION, EVALUATION, AND REPAIR 

To satisfy basic criteria for long-term safety and serviceability, all bridge structures require 
maintenance. Orthotropic steel deck (OSD) bridges, like all other types of bridges, require 
routine inspection, evaluation, and sometimes rehabilitation. New OSD designs are expected to 
provide problem-free performance with appropriate maintenance. It is noted and has been 
mention in previous chapters that many of the service problems that have occurred in the past are 
the result of inadequate construction quality control and/or lack of experience, which cannot 
necessarily be eliminated by good design. Recognizing that all structures are subject to varying 
levels of deterioration over the design life of the structure, this chapter provides recommended 
methods for maintaining and evaluating OSD bridges, including inspection, rehabilitation 
strategies, retrofits, and load rating.  

This chapter does contain some information previously presented in other chapters. It is repeated 
here, in lesser detail, with the understanding that this chapter may serve as a stand-alone 
reference for bridge inspectors. 

8.1. INSPECTION 

Inspecting orthotropic bridges presents unique challenges as compared to other more common 
bridge types. This is mostly due to the inherent configuration of the OSD, which is comprised of 
a thin steel plate stiffened by a large number of closely spaced longitudinal ribs welded to the 
underside of the plate at right angles to the transverse floorbeams (FBs). Additionally, OSDs 
typically are constructed with significantly more weld per square foot. In Chapter 0, Figure 1-1 
depicts typical OSD bridge schematics with open ribs and closed ribs, respectively, identifying 
the major components and representative rib stiffener types. As shown in these schematics, the 
steel deck plate acts as the flange for the ribs, FBs, and the main girders.  The advantages of this 
system are well covered in the previous chapters. 

Comparing the schematics in Figure 1-1, the open rib stiffeners have a tighter spacing between 
the ribs and between the FBs. Comparatively, the inherent stability and increased stiffness of the 
closed rib stiffeners result in wider spacing between the ribs and between the FBs. Regardless of 
type, the ribs typically maintain continuity through openings cut into the webs of the FBs. 

From the inspector’s perspective, an advantage of the open rib configuration is simplified access 
to the welded joints. All welds can be visually inspected within arm’s reach, subject to 
acceptable access for the inspector. Conversely, the closed ribs limit an inspector’s ability to 
visually inspect the root of the welds located within the closed shape of the stiffener. But this is 
no different from attempting to inspect the root of a fillet weld in a plate girder flange to web 
weld. Additionally, as has been demonstrated through research, when the rib-to-deck weld (RD) 
of the closed rib has been properly designed and fabricated, root cracking will not control. 
Should root cracking be suspected due to cracking in weld throat or in deck plate, there are NDE 
methods available to inspect the weld. UT methods have been developed to detect fatigue cracks 
in the longitudinal welds. The UT evaluations can supplement the inspection of orthotropic 
bridges with closed ribs, if root cracking is of concern. As there is high redundancy with 



145 
 

numerous longitudinal ribs 100 percent inspection is not required.  That is, UT evaluations can 
be incorporated by selective sampling regions of the weld in an overall inspection program. 

Guidelines for inspecting Orthotropic Bridges are detailed in Publication No. FHWA NHI 03-
001, Bridge Inspector’s Reference Manual (Ryan et al 2006). In particular: 

• Section 5, Inspection and Evaluation of Bridge Decks, Topic 5.3 Steel Decks. 
• Section 8, Inspection and Evaluation of Common Steel Superstructures, Topic 8.5 Steel Box 

Girders.  

The Manual for Bridge Evaluation (AASHTO, 2008) also covers Inspection of Orthotropic 
Decks in Section 4: Inspection, Subsection 4.8.4.3 Steel Decks. 

8.1.1. Biennial Inspections 

In accordance with the National Bridge Inspection Standards (NBIS), for a Routine Inspection, 
each bridge should be inspected at regular intervals not to exceed 24 months (biennially). Due to 
the large number of welded connection details, it is prudent that a sampling of welds of 
representative orthotropic details (number/location to be determined as part of an overall 
inspection program) receive inspections every 24 months. These predetermined details are then 
monitored over time to ascertain whether the detail is exhibiting any fatigue cracking. 
Historically speaking, fatigue cracking has been problematic for certain orthotropic details. As 
detailed in Chapter 4, many of these problems arose from the trial and error nature of the 
development of the orthotropic detail, as well as poor fabrication. As the technology continues to 
evolve it is important for the inspector to understand which details are most susceptible. These 
details include the RD, the rib-to-floorbeam (RF), rib-to-deck weld at the Floorbeam (RDF), the 
Floorbeam-to-deck weld, and the deck-to-girder weld. Figure 8-1 through Figure 8-3 show 
illustrative examples of potential crack sites in details associated with OSDs.  

As with all structures, attention should be paid to details located in regions of tensile stresses 
(such as over piers in continuous girders, or cantilever deck overhangs), or where located in the 
wheel paths. For OSDs, this obviously includes the entire deck portion of the structure.   

OSD bridges, due to their relative newness in the United States and their fatigue characteristics, 
are considered an advanced bridge type.  As such, they could be considered as complex bridges 
according to the NBIS regulations. As demonstrated in this chapter, however, OSD bridges 
should not be labeled complex for inspection purposes.  However, should an owner choose to 
define their OSD bridge as complex, the NBIS requires identification of specialized inspection 
procedures, and additional inspector training and experience to inspect complex bridges. 
Regardless of complexity designation, just as with inspection of other bridge types, the inspector 
must be properly trained and familiar with OSD bridges.  Although not classified as fracture 
critical in most cases, it is recommended that OSD bridges be inspected by inspectors who have 
successfully completed the FHWA/NHI Training Course - Fracture-Critical Member Inspection 
Techniques for Steel Bridges. This ensures that the inspectors have been exposed to the kinds of 
details that will be encountered on OSDs. Additionally, customized inspection forms can greatly 
facilitate reporting findings in a systematic manner. 
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Figure 8-1 Cracks Identified in the Longitudinal Rib-to-Deck Weld shown Growing 
through the Rib-to-Deck (RD) Weld (de Jong, 2006) 

 

Figure 8-2 Fatigue Cracks Identified in the Rib-to-Floorbeam (RF) Connection at the Base 
of the Trapezoidal Rib.  The Rib is Continuous, Passing through Floorbeam (de Jong, 

2006) 

 

Figure 8-3 Fatigue Cracks Identified in the Rib-to-Floorbeam (RF) Connection at the  
Cut-out Transition.  The Rib is Continuous with the smooth transition Cut-out  

(de Jong, 2006) 
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With respect to the wearing surface, asphalt, epoxy asphalt, and polymer concrete wearing 
surfaces placed over orthotropic steel plate decking have shown tendencies to de-bond and/or rut, 
depending on the material, climate, and flexibility of the supporting steel deck structure. The 
potential for wearing surface de-bonding along the topside of the plate and wearing surface 
cracking can be evaluated by inspectors walking on the wearing surface in work zones provided 
by appropriate traffic control. Typical wearing surfaces for OSDs are asphalt overlays (25 mm to 
76 mm [1 inch to 3 inch] thickness) and polymer concrete paving surfaces (19 mm to 51 mm [3/4 
inch to 2 inch] thickness).  

A loss of bond can occur in the wearing surface if the top surface of the steel plate was not 
properly prepared (blast cleaning, corrosion-protective painting, and bonding layer application). 
Evidence of de-bonding includes pavement shoving, raveling, rutting, and potholes (findings 
observed from the top of deck). Topside cracking of the wearing surface, also observed from the 
top of deck, typically occurs due to excessive local OSD flexibility manifested with a thick 
asphalt wearing surface over a thin steel deck plate. In addition to visual inspection (see Figure 
8-4), other NDE testing methods typically used include hammer sounding, chain dragging, 
delamination detection machinery, acoustic wave sonic/ultrasonic velocity measurements, 
ground-penetrating radar, impact-echo testing, and infrared thermography. Once detected in the 
wearing surface, destructive methods are used to confirm deck plate cracking (see Figure 8-5). 

 

Figure 8-4 Visual Observations Indicating Deck Plate Crack as Evidenced by the Overlay 
Deterioration (de Jong, 2006) 

 



148 
 

 

Figure 8-5 The Deck Plate Crack is Verified after Removal of Asphalt Layer  
(de Jong, 2006) 

8.1.2. Inspection Access 

Access to the underside of the OSD for visual inspection of the RD and the RF is required. Very 
often, the OSD is part of a closed steel box girder (Figure 8-6), which facilitates the inspection of 
the rib stiffeners on the interior of the box girder by allowing the inspector to enter through a 
manhole in the web and climb through the girder from one end to the other. On other bridge 
configurations, access equipment/vehicular lifts are required to place the inspector in position to 
evaluate the rib stiffener details. Even on box girder bridges, access equipment/vehicular lifts 
may be required to inspect the exterior of the box girder. It is critical that the inspector have 
knowledge about where the fatigue-prone details exist, so these areas are examined more 
carefully. Common steel defects of concern when inspecting OSDs include: bent, buckled or 
damaged members; corrosion; section loss; and fatigue and other stress-related cracks. In 
addition to visual inspection, other NDE testing methods employed may include: dye penetrant, 
magnetic particle, UT (phased array and straight line), radiographic testing, pulse eddy current, 
and acoustic emissions testing. 

 

Figure 8-6 Conceptual Sketch of a Box Girder Cross-section with Orthotropic Steel (Ryan, 
2006) 
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The two primary methods of gaining access to an orthotropic bridge are access equipment and 
vehicular (aerial) lifts. Access equipment includes ladders, rigging, and scaffolds. Typical 
vehicular lifts are manlifts, bucket trucks, and under-bridge inspection vehicles. Usually, a 
vehicular lift will be less time-consuming than access equipment. However, the time savings 
must be offset by the higher costs associated with operating vehicular lifts. The purpose of either 
method is to position the inspector within arm’s reach of bridge components to facilitate a hands-
on inspection. This is of particular importance for the fatigue-prone connection details. 

In assessing the timesaving effectiveness of vehicular lifts, the following questions should be 
answered: 

• What type of lift is available? 
• How much of the bridge can be inspected using the lift? 
• How much of the bridge can be inspected from one set-up? 
• How much time does it take to inspect at each set-up? 
• How much time does it take to move from one set-up to the next? 
• Does the lift require an operator and/or driver? 
• Will using the lift require special traffic control? 
 
Inspection time and vehicular lift costs can then be compared to the time and costs associated 
with using conventional access equipment. 

8.1.3. Biennial Inspection Report 

A written report shall be prepared for each biennial bridge inspection performed by certified 
bridge safety inspection personnel. The report requirements are described in the applicable 
specifications adopted by each state department of transportation (or equivalent entity) and 
various other transportation agencies (turnpike commissions, thruway authorities, and port 
authorities, etc.). In addition to the required information delineated in the appropriate 
specification, the report should also include the following information about the OSD system: 

• Separate listings of the ratings applied to each component. 
• Photographs of deficiencies. 
• Reasons for ratings lower than five. 
• Recommended action items. 
• Reasons for recommending an in-depth/NDE inspection (if applicable). 
 
There are two major rating guideline systems currently used throughout the country (FHWA’s 
Bridge Inspector’s Reference Manual): 

• FHWA’s Recording and Coding Guide for the Structural Inventory and Appraisal of the 
Nation’s Bridges is used for the National Bridge Inventory (NBI) component rating method: 

o A 1-digit code for Item 58 on the Federal Structure Inventory and Appraisal (SI&A) 
sheet indicates the overall condition of the deck. 

o A 1-digit code for Item 59 on the SI&A sheet indicates the overall condition of the 
superstructure. 
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o Condition Rating from 0 to 9, where 9 is the best possible rating. 
o Use both the current and previous inspection findings to determine the rating. 

• The AASHTO Guide for Commonly Recognized (CoRe) Structural Elements is used for the 
element level condition state assessment method: 

o The AASHTO CoRe elements for an Orthotropic Steel Deck are: 
 

Element No.  Description 
030  Steel Deck – Corrugated / Orthotropic 

 

o The unit quantity for Element 030 Steel Deck is “Each” and the entire element must 
be placed in one of the five available conditions based solely on the top surface 
condition. Condition state 1 is the best possible rating. The total deck surface area is 
needed in order to calculate a percent deterioration and fit into a given condition state 
description. Some bridge owners use the total area (m2 or ft2). When total area is 
used, the total area must be assigned to one of the five available condition states 
depending on the extent and severity of deterioration. 

o For connections of steel decks showing rust packing between steel plates, use the 
“Pack Rust” Smart Flag, Element No. 357, with one of the four available condition 
states. The unit quantity for Element Smart Flags is “Each” and the entire element 
must be placed into one condition state. 

o The AASHTO CoRe elements for a Steel Box Girder (if applicable) are: 
 

Element No.  Description 
101  Unpainted Closed Web/Box Girder 
102  Painted Closed Web/Box Girder 

o The unit quantity for the steel box girder is “meters or feet” and the total length must 
be distributed among the four available condition states for “unpainted” and five 
available condition states for “painted” structures, depending on the extent and 
severity of deterioration. For both cases, Condition state 1 is the best possible rating. 

o For steel box girder damage due to fatigue, use the “Steel Fatigue” Smart Flag, 
Element No. 356, with one of the three available condition states. 

o For steel box girder rust, use the “Pack Rust” Smart Flag, Element No. 357, with one 
of the four available condition states. 

o For steel box girder damage due to traffic impact, use the “Traffic Impact” Smart 
Flag, Element No. 362, with one of the three available condition states. 

o For steel box girders with section loss, use the “Section Loss” Smart Flag, Element 
No. 363, with one of the four available condition states. 

 

8.1.4. Element Level (Pontis) Manual Excerpts  

An example of a state’s CoRe element level field inspection manual that incorporates OSDs as a 
Deck Element and steel box girders as a Superstructure Element is the Michigan Department of 
Transportation (MDOT) Pontis Bridge Inspection Manual (2007). The MDOT Pontis Manual 
includes applicable Smart Flag pages for steel fatigue, pack rust, traffic impact, and section loss, 
with several condition state photographs. 
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8.2. LOAD RATING 

This section outlines the approach to load rating of orthotropic bridges by evaluation of 
applicable limit states using the LRFR Methodology consistent with the 2008 AASHTO Manual 
for Bridge Evaluation (MBE).  

Load rating of orthotropic bridges varies depending on the type of application. Simple decks that 
only serve to transfer local wheel loads for another superstructure system need not be routinely 
evaluated for load capacity. Fatigue, and not strength, limit states control most of the design of 
the orthotropic components. However, there exists the potential for development of localized 
section loss that may control the strength rating. Also, a specified permit vehicle with a large 
axle load may be heavy enough to control.   In these cases, detailed load rating should be carried 
out. Additionally, when the orthotropic panel is used as an integral component of a 
superstructure system, such as a box girder flange or cable-stayed bridge deck, it must be loaded 
as a part of that steel bridge member.   

The rating of orthotropic long-span bridges, movable bridges, and other complex bridges may 
involve additional considerations and loadings not specifically addressed in MBE Section 6 and 
the rating procedures should be augmented with additional evaluation criteria where required. 
This section extends the LRFR provisions with additional criteria for orthotropic bridges and 
defines the limit states and performance criteria for load rating of design loading, legal loads, and 
permit loads.  

Consistent with the MBE, the following general equation should be used in determining the load 
rating of each component and connection in the orthotropic panel: 
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where: 

RF  =  Rating Factor 
Cr  =  Capacity 
γ  =  LRFD load factor 
DC  =  Dead load effect due to structural components and utilities 
DW  =  Dead load effect due to wearing surface and utilities 
P  =  Permanent load other than dead load (where any post-tensioning is used, this 

is generally ignored for OSD) 
LL  =  Live load effect 
IM  =  Dynamic load allowance 

 

8.2.1. Live Loads for Evaluation 

Bridge evaluations are performed for varied purposes using different live-load models and 
evaluation criteria. Three load-rating procedures that are consistent with the load and resistance 



152 
 

factor philosophy have been provided in the MBE for the load capacity evaluation of in-service 
bridges. Each procedure is geared to a specific live-load model with specially-calibrated load 
factors aimed at maintaining a uniform and acceptable level of reliability in all evaluations. The 
load-rating procedures are structured to be performed in a sequential manner, as needed, starting 
with the design load rating: 

• Design load rating (first level evaluation).  
• Legal load rating (second level evaluation).  
• Permit load rating (third level evaluation).  

 
In the LRFR process, the HL-93 Design load rating serves as a screening process to identify 
bridges that should be load rated for legal loads. This was based on the longitudinal analysis of 
member load effects for the HL-93 loading. 

Global effects, as a result of the OSD participating as an integral part of the bridge 
superstructure, and local effects from the application of the wheel loads should be superimposed 
to estimate the extreme force effect in the panel. Different live load components govern the 
global and local effects. Local effects in OSDs are governed by wheel loads, not truck loads. In 
effect, the screening level evaluation will then consider the design truck or design tandem wheel 
loads. The magnitude of wheel loads specified in the LRFD Specifications are 71 kN (16 kips) 
for the HL-93 design truck and 55.6 kN (12.5 kips) for the HL-93 design tandem. The refined 
HL-93 truck for orthotropic decks is shown in Figure 5-1 and should be used when evaluating 
the local effects.   

In 2005, AASHTO adopted new legal loads for single-unit Specialized Hauling Vehicles (SHV) 
that include closely spaced multiple axles on short wheelbase trucks to model the new generation 
of hauling trucks. These vehicles are represented by the new Notional Rating Load (NRL) 
model, which is an 8-axle truck weighing 356 kN (80 kips), as shown in Figure 8-7. For framing 
members, the HL-93 will envelope the NRL load effects. It is uncertain if this will always be the 
case for OSDs. The design load rating in LRFR may need to consider both the HL-93 load model 
and the NRL load model to serve as an adequate screening level for OSDs. The impact of closely 
spaced multiple axles on OSD behavior needs to be further investigated. 

 

Figure 8-7 Notional Rating Load for Single Unit SHVs 
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The NRL is a suitable rating load model for states that comply with Federal weight laws and 
Federal Bridge Formula B (AASHTO LRFR). States that allow exclusion vehicles usually have 
legal loads that will exceed the Formula B limits for axle groups. It would be important to 
consider these state legal loads in the load-rating process. Checking of OSDs for permit loads 
should consider the specific axle configuration and axle loads as given in the permit application. 

8.2.1.1. Application of Wheel Loads 

Local response of OSDs is sensitive to how the wheel loads are applied. As discussed in Chapter 
5, the simplified, but unrealistic, approach of using concentrated wheel loads should not be used 
for OSDs. The wheel load should be distributed over the tire contract area yielding a uniformly 
distributed pressure to be applied to the OSD contact surface. Furthermore, the notional 71 kN 
(16 kip) wheel loads of the HL-93 Design Truck should be more accurately modeled as two 
closely spaced 35.5kN (8 kip) wheels four feet apart to more accurately reflect a modern tractor-
trailer with tandem rear axles (see Figure 5-1).  

For most orthotropic component evaluations, it is the single truck loading that will control. 
Multiple presence of live load can typically be ignored, except for the evaluation of FBs with 
longer (4.6m [15ft] +) spans. 

8.2.1.2. Load Paths and Load Distribution 

OSD evaluation requires analysis of load effects that are primarily in two orthogonal directions 
for the ribs and FBs and involves localized distortions at the FBs. The design of OSDs is often 
governed by fatigue mainly where the ribs interact with the FBs. Analyzing the effects that occur 
at the intersections of the ribs and FB and how these effects impact the long-term performance of 
OSDs is an important aspect of fatigue life evaluation. However, due to the highly redundant 
nature of orthotropic bridges, this is of lesser importance than a strength evaluation.  

As described in Chapter 5, the required level of analysis can vary depending on the test data 
available to the engineer and the limit states under investigation. Strength and Service limit 
states, and certain fatigue details, can be addressed by simplified 1-D and 2-D analysis methods. 
However, certain details require refined 3-D analysis methods for evaluation of Fatigue limit 
states. These same analysis requirements apply to evaluation of orthotropic bridges. (See Chapter 
5 for more information.) 

8.2.1.3. Live Load Factors for Evaluation 

LRFD calibration reports a target LRFD reliability index (β) of 3.5. The LRFD design criteria 
based on this index are derived for a severe traffic-loading case (including the presence of 5000 
ADTT). The LRFR procedures adopt a reduced target reliability index of approximately 2.5 
calibrated to past AASHTO operating level load rating. Sets of load factors targeted to specific 
types of live loads (design, legal, and permits) are calibrated to achieve a certain level of 
reliability under various combinations of loads.  

The magnitudes of the load factors in a combination reflect the uncertainty of the loads and the 
probability of the simultaneous occurrence of the loads represented in the combination. These 
load factors are calibrated for force effects due to trucks, not individual wheel loads. There are 
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key differences between truck multiple presence and axle multiple presence. There will be a 
greater probability of side-by-side axle events than side-by-side truck events, due to the fact that 
each truck has two or more axles. However, OSD components are mostly controlled by the 
single truck loading. LRFD has specified a Multiple Presence Factor (MPF) of 1.2 to account for 
the possibility of a heavy single truck.  

The LRFR live load factors for legal loads provided in the MBE account for the multiple-
presence of two heavy trucks side-by-side on a multi-lane bridge. The live load factors for 
permits were derived to account for the possibility of simultaneous presence of non-permit heavy 
trucks on the bridge when the permit vehicle crosses the span. Their appropriateness for OSD 
evaluation is uncertain. The issue of design load calibration for LRFD deck design using recent 
traffic data was a focus of NCHRP Project 12-76. Rigorous calibration of load and resistance 
factors for deck design requires the availability of statistical data beyond live loads. LRFD did 
not specifically address deck components in the calibration. 

As discussed in Chapter 5, the HL-93 design truck axle weight of 142.5kN (32 kips) is slightly 
less than the 75-year extrapolation value calculated by Nowak (2008) for decks. However, it is 
believed that the live load factor of 1.75 is somewhat conservative considering the lesser 
variations found in typical truck axle load spectrum. Until future research addresses the LRFR 
live load calibration for deck components, the current factors are assumed to be acceptable for 
load rating of OSDs. 

8.2.1.4. Dynamic Load Allowance 

Static stresses are amplified by dynamic load allowances to estimate dynamic stresses. The 
dynamic load allowances (IM) of the LRFD Specifications are 0.33 for Strength and Service 
limit states and 0.15 for Fatigue limit states. The specified values of IM consider surface 
roughness to be the predominant characteristic that is not apparent to the designer but can be 
easily verified in the field by the inspector. Further, they assume the potential surface roughness 
associated with potholes in typical reinforced concrete decks that are not anticipated in OSDs, 
depending on whether the wearing surface is thick or thin. The MBE provides a reduced dynamic 
load allowance for load rating primarily as a function of pavement surface conditions. The 
dynamic load allowances specified in the LRFD Specifications may be reduced for OSDs 
considering the nature of the wearing surfaces. However, as mentioned in Section 5.5.3, special 
consideration for the need for higher impact factors in the regions of expansion joints or other 
details that may result in amplified loads may be considered by the engineer. 

8.2.2. Resistance and Resistance Modifiers 

LRFR load capacity C in the load rating equation is given as: 

c s nC R= ϕ ϕ ϕ
  (8-2) 
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where,    

φc = Condition factor  
φs  = System factor  
φ = LRFD resistance factor 

 
LRFD Design provisions of Chapter 5 of this Manual and other sources referenced are to be used 
as applicable for determining the nominal resistance Rn of existing OSDs. Resistance factors, φ, 
for the Strength limit state, shall be taken as specified in LRFD. Nominal resistance shall be 
based on the findings of the most recent field inspection, including consideration of effects of 
deterioration or cracking. A deteriorated structure may behave differently than the structure as 
originally designed and different failure modes may govern its load capacity. The condition 
factor (φc) should be applied to the orthotropic bridge in a manner consistent with evaluation of 
any typical steel bridge component.  

Load modifiers (η) relating to ductility, redundancy, and operational importance contained in the 
AASHTO LRFD Bridge Design Specifications are not included in the general load rating 
equation. In load rating, ductility is considered in conjunction with redundancy and incorporated 
in the system factor φs. When the orthotropic panel is used as a floating deck system, the ribs 
should be evaluated with φs = 1.0 due to their high local redundancy and the FBs should be 
evaluated with φs = 0.85. When the orthotropic panel is an integral component of a global 
superstructure system, φs should be determined based on the global bridge system. 

8.2.3.Limit States 

Generally, the Strength condition is the primary basis for LRFR evaluation of bridge members. 
The focus of serviceability checks in evaluation is to identify and control live load effects that 
could potentially damage the bridge structure, and impair its serviceability and service life. 
Serviceability checks are necessary even though the live load may have been determined to be 
safe at the Strength limit state. Consequently, serviceability considerations in evaluation are 
aimed at avoiding or minimizing bridge damage due to live loads by placing limits on service 
load stresses under normal use and controlling permanent inelastic deformations under 
authorized or unauthorized overloads. In LRFR, the serviceability checks are generally given as 
optional, as there may be a high-cost penalty for imposing certain non-Strength related limit 
states in evaluation compared to design where the cost impact may be negligible. Service limit 
states can be used for evaluation of OSDs to protect the integrity of the wearing surface. Fatigue 
need not be considered for routine evaluation. 

8.2.3.1.Strength Limit State 

Strength limit states maintain the safe load-carrying capacity governed by material properties, 
such as yield strength and/or geometric properties, including loss of stability. Global and/or local 
geometry may govern stability considerations. For the case of a floating OSD, the ribs and FBs, 
including connections, should be independently evaluated for shear and flexural strength from 
local demands. When the orthotropic panel is used as an integral component of a superstructure, 
it must also be evaluated for stability by local and panel buckling, and must consider both local 
and global demands.  
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The Strength limit states, including live load and dead load as the primary loads in the 
combinations, govern the evaluation of OSDs. In the MBE, these load combinations are grouped 
as Strength I and Strength II limit states. Strength limit states must be satisfied for both buckling 
and yielding. The Strength I load combination is applied in conjunction with the HL-93 design 
load model and legal load models for rating and posting, while the Strength II load combination 
is applied for checking overweight permits during the permit review process. 

The design-load rating at the Strength I limit state assesses the performance of existing OSDs 
using the LRFD design loading (HL-93) and design standards as defined in Chapter 5 of this 
Manual. In LRFR, the design load rating of bridges may be performed at the same design level 
(Inventory level) reliability adopted for new bridges by the AASHTO LRFD Bridge Design 
Specifications, or at a second lower-level reliability comparable to the Operating level reliability 
inherent in past load-rating practice. The need for two levels of reliability for screening were 
based on meeting the needs of states that comply with Federal weight laws and states that allow 
exclusion vehicles. For OSDs, a single screening level consistent with the design level reliability 
may be adequate.  

Bridges that do not have sufficient capacity under the design load rating are load rated for legal 
loads to establish the need for load posting or strengthening, also at the Strength I limit state, 
using specially calibrated live load factors for Federal and state legal loads. The LRFR Posting 
methodology in the MBE addresses weight limits for truck loading and not axle loading. This is 
a reliability-based method that aims to maintain the same reliability target for posted bridges. 
The posting equation has a built-in truck overload cushion for low-rated bridges. The application 
of this methodology to the posting of decks governed by axle loads has not been thoroughly 
established and needs to be investigated. 

MBE Section 6A.4.5 provides procedures for checking bridges to determine the load effects 
induced by the overweight permit loads and their capacity to safely carry these overloads. This is 
done at the Strength II limit state. Permit live load factors are selected based on the permit type, 
loading condition, and site traffic data. Permit live load factors were specially calibrated 
considering likely multiple presence probabilities for Routine and Special permits under various 
crossing scenarios using live load distribution factors. It is uncertain how these live load factors 
will apply to deck evaluations governed by axle loads. 

8.2.3.2.Service Limit State 

Service limit states are applied to maintain the service life of the deck. In LRFR, Service II load 
combination check is provided for the control of permanent deflection in steel girder bridges. 
However, this will never control in evaluation orthotropic steel components since Strength limit 
state checks are already based on the yielding limit. The Service I live load deflection check is 
not usually carried out for LRFR evaluation of bridge members. However, it is recommended 
that this combination be applied to protect the integrity of the wearing surface on the OSD. The 
owner will likely consider it unacceptable if the wearing surface is allowed to fail prematurely.  

OSD wearing surfaces have performed relatively poorly in some instances, attributable to 
excessive deck flexibility, improper materials, and construction-related problems. Chapter 5 
specifies that for OSDs, the Service I limit state must be satisfied for overall deflection limits for 
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the deck plate (span/300) and the ribs (span/1000) and relative deflection of adjacent ribs (0.10 
inches). These deflection limits are intended to prevent premature deterioration of the wearing 
surface, but are based on limited research. Service I limit state check for deflection should be 
performed during the normal course of load rating OSDs. The results will be very helpful in 
identifying decks that may be susceptible to premature deterioration of wearing surfaces and 
could guide inspections and future maintenance programs. However, these limits cannot be 
applied in a strict sense, and do not allow for meaningful calculation of rating factors or loads for 
posting.  

In the special case of a thin polymer concrete wearing surface, there are measurable material 
performance criteria that may be used for detailed load rating calculations with the Service I 
limit state. Since there has been no LRFD or LRFR research conducted on design of these 
materials, appropriate load and resistance factors will have to be selected at the discretion of the 
engineer based on material test data.  

Two aspects of Service I check will need further discussion and study:  

• What deflection limits are appropriate for the older inventory of OSDs that are known to be 
more flexible than modern designs? Are the design deflection limits too stringent for existing 
bridges?  

• Should the Service I check be mandatory for setting load restrictions such as posting or for 
use in permit reviews? 

 
A mandatory requirement for deflection checks could have operational consequences that need to 
be considered. Most OSDs are on major bridges that serve as key transportation links, which 
may make it harder to justify service restrictions based only on subjective serviceability 
considerations. Ultimately, the owner must decide on the course of action, whether to load post 
the bridge or take some other corrective action to achieve the necessary performance. 

 

8.2.3.3. Fatigue Limit State 

The MBE does not currently employ the Fatigue limit state for the load rating of steel bridge 
structures, and orthotropic bridges are no different in this regard unless the owner desires to 
restrict traffic to increase the service life. It is more likely that an existing orthotropic bridge will 
require a fatigue evaluation of remaining life for maintenance or rehabilitation planning. Section 
7 of the MBE gives fatigue evaluation procedures to address load-induced fatigue in components 
from in-plane stresses, using the nominal stress S-N curve approach. As noted in previous 
chapters, these Category details do not specifically apply to OSD fatigue issues that are more 
distortion induced.  

Fatigue life evaluation of existing orthotropic bridges can be highly intricate.  It requires refined 
Level 3 or Level 1 analysis, as described in Chapter 5, and deep understanding of the structural 
fatigue science. Evaluation requires more detailed application of live load and more accurate 
structural modeling than is necessary for design. Stresses at fatigue-prone details are very 
sensitive to the precise transverse position of the wheel patch load, and maximum stress cycles 
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are often the result of two different trucks in slightly different positions causing a reversal. For 
design, this is typically addressed by conservatively assuming the truck wheel loads to be applied 
at the most critical location for all cycles and stresses are simply kept below the threshold 
(infinite life design). For evaluation, these simplifying assumptions will lead to excessively 
conservative results. The live load applied must represent the effective truck rather than the 
maximum truck for finite life calculation and must account for the spectrum of transverse 
positions and multiple truck events. Another complication is in accounting for the stiffening 
effect from the wearing surface, which is dependent on the temperature variations. For accurate 
results, this may require Monte-Carlo simulation for rational transverse positioning of load and 
stress cycle counting or performing a site-specific assessment by monitoring stresses at critical 
details. That is, it is unlikely that there will ever be an effective method for measuring the exact 
wheel loads and respective wheel positions to compile an accurate stress history for each 
orthotropic detail. 

8.3. REHABILITATION STRATEGIES 

Orthotropic bridges designed according to the guidelines provided in this Manual are expected to 
produce a relatively trouble-free performance. However, there are many existing bridges that 
were designed prior to the full understanding of behavior gained by research and development in 
recent years. Additionally, it is possible that even well-designed bridges may fail by 
displacements and stresses that arise from other non-design issues.  For example, bridges 
experience operational issues like joint lock-up, or construction-related problems like hot 
cracking in welds. The two most common problems found in orthotropic bridges that require 
rehabilitation are wearing surface failure and metal fatigue cracking. 

Wearing Surface Failure 

Wearing surface failure is most often the result of an overly-thin, flexible steel deck plate design, 
or due to lack of quality control during construction. These circumstances will typically call for 
simple replacement of the surface with a properly applied system that is designed to 
accommodate the increased deflections. Stiffening the steel deck plate to improve surface 
performance has shown to be impractical. Some surface failures are attributed to localized 
cracking in the deck plating or from water penetration and freeze-thaw cycling that can be 
mitigated. These situations can be addressed by special retrofit and repair strategies. Additional 
data on maintenance and repair of wearing surfaces is covered in Chapter 9.  

It is also noted that a different approach to rehabilitation may be required, depending on whether 
the wearing surface is thick or thin (see Chapter 9 for description). Thick wearing surfaces that 
have delaminated will result in deeper potholes, and will leave moderate levels of debris on the 
roadway. Although it may not be a safety concern, this may impact the traveling public in terms 
of driving comfort. Thin wearing surfaces will not have this problem, and could allow for more 
time to plan and execute the necessary repairs.  

Metal Fatigue Cracking 

OSDs are highly redundant structures and many details are displacement loaded. Fatigue 
cracking eventually proceeds at a very slow pace, except for the possibility of crack propagation 
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in the deck plate.  Here, field experience and research have shown that several crack 
promulgating phenomena interact to drive cracking. Depending on the size and importance of the 
bridge, monitoring by visual inspection must be evaluated verses the cost of replacing given deck 
elements. Since there is often no life-safety concern with many fatigue problems, the options 
considered may be as follows: 

• Do nothing 
• Monitor 
• Retrofit bad details 
• Remove and replace bad details 
• Full bridge replacement 

 
The strategy adopted should be based on life-cycle cost analysis of the various options. Very 
often, orthotropic bridges are major structures for which decisions are dominated by traffic 
control considerations much more than the basic cost of executing the structural repair.  

The fist step in development of any fatigue rehabilitation strategy is to determine the cause and 
extent of the problem. Orthotropic bridges are highly repetitive in terms of details, and there is 
the potential that any problem will also be found throughout the entire bridge. Construction-
related problems will likely manifest within the first few years of the service life, while fatigue-
related problems will not likely be observed until a much later time. In-depth inspection is 
recommended to assess the root cause of any problem.  

Redecking Applications 

OSDs used in redecking application are particularly sensitive to fatigue since the interactions 
with the supporting structure are often complex and difficult to assess. In floating decks, where 
subfloor structure resting on stringers was introduced to support the deck, the likely source of 
fatigue problems in the subfloor, or strap plates connecting the ribs to it, is the excessive relative 
displacement between deck and subfloor. This problem is solved either by increasing the 
flexibility of the ligaments, or by introducing stiff ligaments that prevent relative movement. 

Strap Plates’ Phenomena 

Strap plates, as shown in Figure 8-8, are susceptible to uplift effects, especially if adjacent to a 
roadway joint. The problem is most often the result of prying action or poor initial installation.  

During installation, if the OSD was forced onto the subfloor beam by placing a weight on the 
deck, experience indicates that bolt failure is almost guaranteed. In such a case, a necessary, but 
not necessarily sufficient remedy is to shim the space between strap and subfloor when the deck 
is free. Prying action effects must be checked regardless.  

High stresses at the toe of the RD are obtained when the bolt is far from the weld. Unfortunately, 
due to lack of access, strap plate welds to the rib are not field repairable. Where open ribs may be 
repairable by bolting, as shown in Figure 8-8, welds in strap plates of closed ribs cannot be 
repaired for lack of access. 
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Figure 8-8 Retrofit Connection using Strap Plates to connect the ODS to the Existing 
Structure  

Subfloor Structure 

Subfloor structure problems surface in jointed decks, which are typically allowed to float 
longitudinally, and the subfloor connections to the stringers must take the longitudinal impulses 
of trucks entering and exiting the panel (i.e., the deck structure between joints). Usually 
transverse resistance is sufficient to handle effects arising from change of lane. 

Panel lengths can be in the order of floor beam spacing such as 18.3 m (60 ft), or girder span 
length up to 61 m (200 ft), and possibly more. The engineer needs to investigate the more 
effective strategies of displacement prevention vs. increasing flexibility. Alternately, increasing 
the length of a short panel by joining two or three of them increases the resistance to deformation 
of the ligaments accordingly and could be sufficient to abate the distress permanently or reduce it 
to a manageable level. 

When the transverse flexibility of the sub floor is high, causing top deck displacements relative 
to the floor beam, effects could be created and could cause crack propagation of strap plate 
welds. In such cases, displacement prevention by adding FBs usually provides satisfactory 
solutions. The ability to perform this in the field has been questioned, but despite difficulties, it is 
deemed possible if the space is available. 

8.4. FATIGUE RETROFIT 

Although there has been considerable research focused on the fatigue performance of OSDs as a 
result of the in-service cracking that has been observed, there is much less information in the 
literature specifically focused on repair and retrofit strategies. Furthermore, although much of the 
research focused on new design is intended to be used for general applications, retrofit strategies 
in the literature are, for the most part, applicable to a specific bridge and/or geometric 
configuration. In other words, they are often specific repairs to a specific shortcoming in a given 
design. Nevertheless, important information can be gleaned from the literature and by applying 
fatigue retrofit strategies commonly used for other bridge components, such as hole-drilling or 
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adding bolted splices. Such retrofit concepts have a proven track record and can often be applied 
to a multitude of details, many of which can be found on a typical OSD. 

One major point to keep in mind with respect to cracking in OSDs is related to the consequence 
of cracking. Contrary to the effects a fatigue crack may have in the tension flange of fracture 
critical bridge, fatigue cracking in OSDs is, in most cases, simply a maintenance or serviceability 
issue. This is primarily due to the inherent substantial level of redundancy in these deck systems 
(i.e., cracking in one member will not compromise the strength of the deck system). However, if 
left unchecked, the potential for continued crack propagation exists and retrofit or repair is a 
prudent choice. Nevertheless, the inherent redundancy is often advantageous, as many types of 
cracks will not need to be retrofitted in an emergency type response. 

In this section, a few common problem areas will be reviewed along with retrofit/repair 
strategies that have either been used in the field or would appear to be effective based on 
previous experience. The reader is encouraged to obtain the cited references for further detail as 
the information provided herein is intended to only provide an overall description of the retrofit. 
Although references are provided in this manual, the reader is cautioned that they are not 
necessarily endorsed by this manual. It is the reader’s responsibility to analyze any retrofit 
strategy and verify the effectiveness, robustness, and applicability of a given retrofit prior to 
selection. 

Lastly, regardless of the strategy employed, it is highly recommended that field measured strains 
and displacements should also be obtained to ensure the effectiveness of the retrofit. OSDs on 
larger bridges contain hundreds if not thousands of duplicate details. Assuming that cracking has 
been observed at one such detail, the number of potential retrofit locations can quickly become 
significant (potentially hundreds or thousands of locations). Obviously, it would be advantageous 
to accurately determine that a given retrofit is going to perform as intended prior to 
implementing it on a wide scale. Hence it is recommended that a few prototype retrofits be 
installed, instrumented, and monitored for a period of time in order to determine the 
effectiveness of the retrofit and identify if any improvements or modifications are required. 

Deck Plate Cracking 

When the deck plate is relatively thin, failures can occur all along the rib stem going through the 
deck plate, instead of the RD. This condition has been a persistent problem in Europe, where 
deck plates were originally designed to be thin (10 mm to 12 mm [3/8 inch to 15/32 inch]). 
Where, for a long time, these cracks were back-gouged and welded before replacement of the 
asphalt, the current solution, after the cracks are repaired, is to place shear studs on the deck plate 
and a layer of reinforced concrete, which considerably increases the composite transverse 
rigidity of the deck and its resistance in flexure. Although analyses indicate promising results, 
the duration of this fix relative to deterioration of concrete, which may or may not be protected 
by asphalt, has yet to be determined by actual experience. 

In emergency repairs, it is acceptable to weld or bolt plates over the area where deck plate 
cracking has occurred. Such retrofits must be considered temporary and used if there is concern 
regarding the integrity of the deck or if there is some other safety concern (e.g., a piece of deck 
falling underneath the bridge or a piece of steel puncturing a motorist’s tire).  
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More permanent solutions that have been used include cutting a section of the thin deck plate out 
and installing a thicker plate in its place. Obviously, this may require shortening the height of the 
ribs if a much thicker plate is used to minimize the mismatch in the height at the driving surface. 
Special consideration must be given to the quality of all repair welds to ensure the repair will 
perform as desired. Depending on the orientation and position of the crack, it may be feasible to 
simply arc-gouge the crack out to the crack tips, and place a CJP weld. Obviously, the success of 
any weld repair is heavily dependent on the quality of the weld, as well as the driving mechanism 
that produced the crack in the first place. For example, if the cracks are the result of the deck 
plate being too thin, simply repairing the crack with a CJP weld, cracking could be expected to 
reinitiate in the future, as the cause of the problem has not been corrected (Kelly and Dexter 
1997). 

Other stiffening strategies include using a thin layer of high-performance concrete that is 
reinforced with a steel mesh or other similar reinforcing. Bond to the steel deck plate is essential 
to ensure a composite system is achieved and the greatest increase in stiffness. In some cases, 
very short shear studs have been used to ensure adequate bond between the concrete and steel 
deck plate. Such an approach was used on the McNaughton Bridge rehabilitation located in 
Pekin, Illinois. An overly flexible deck plate led to cracking of the overlay, which in turn led to 
corrosion of the deck plate. 

One interesting repair strategy that has been proposed, apparently with success, involves filling 
the ribs beneath the wheel paths with a special epoxy that bonds to the deck plate and rib wall. 
The material possesses enough stiffness to ensure it provides vertical support to the deck plate 
(between the rib walls), thereby reducing bending stresses. It is reported that the decrease in deck 
plate stresses can be reduced by a factor of two or three, although no specifics regarding 
durability, laboratory data, or strain measurements are given (Boersma, 2003). It would seem 
that the actual effectiveness of this approach, especially the long-term environmental durability 
issues, would need to be verified before implementing on a large-scale.   

It has also been proposed to simply bond an additional steel deck plate to the existing deck plate 
using an appropriate adhesive. According to Boersma, field tests suggest this is a viable option, 
though no specific data are presented in the paper (Freitas, 2009).  

Depending on FB and deck proportions, it is possible that cracking through the plate will occur 
in the deck plate due to stress concentrations at the RDF. In this case, remedial measures, such as 
back-gouging and welding, will likely have a short duration. Rib replacement with a bulkhead 
may provide a satisfactory solution. 

Rib Cracking (Weld Toe in Rib) 

Many RF failures are caused by wheel passage over the rib or ribs nearest to the wheel mean 
position. Hence, for every traffic lane, there are two problem areas (possibly four) out of six ribs 
per lane. An assessment of the costs of monitoring vs. that of replacing two ribs or the entire 
truck lane with improved details should be part of the engineering study necessary for a 
recommendation. 
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When the failure occurs in the rib material at the end of the FB cut-out transition, the crack will 
extend longitudinally (horizontally along the rib length) to several inches. Drilling a hole at the 
crack termination will arrest the crack, because once the crack has reached a given value, the 
effective displacement no longer causes the crack to grow. This alternative solution to 
replacement requires monitoring. Caulking and monitoring are part of this solution. 

Rib Splice Cracking 

Fatigue cracking of the welded transverse splices in the longitudinal ribs has been known to 
occur at field splices. Although bolted field splices seem to generally perform quite well, field 
welded splices have not enjoyed such success. The reasons for the cracking are not much 
different than typically noted for other field welds. These included poor quality and the lack of 
complete fusion or penetration. Lack of penetration can’t be avoided in some of the details used 
to make the joint. In most cases, a large plate (serving as a backing bar) is fitted and welded 
inside one of the ribs. The next rib is then slid over the backing plate and a weld placed within 
the joint. Cracks have been known to grow out of the lack of fusions zones, as well as the weld 
toe. 

Repairs have included rewelding the joint or replacing the splice with a bolted joint. Regardless, 
it is important to isolate the crack in the rib from entering the deck plate if possible. Hence, it 
would be advisable to drill out the crack tip to reduce the likelihood of the crack propagating 
further. A recommended strategy would be to design and install the common bolted rib splice if 
possible. This effectively eliminates or bypasses the existing welded splice. In order to install 
and access the bolts, a hand-hole will be required. In new design, this is typically placed in the 
bottom flange of the rib. The addition of the hand hole does not really decrease the capacity of 
the rib if sufficient splice plates are used. Then, using relatively thick splice plates that are 
sufficiently long to accommodate the effects of shear lag, an effective bolted splice can be 
introduced.  

Fatigue cracking will likely reinitiate if repair welds are used, unless the quality of the repair 
welds are greater than originally placed. Lastly, the bolted connection will likely have a greater 
fatigue resistance than the welded repair. Hence, repair welds are discouraged unless complete 
joint penetration and excellent weld quality can be assured. 

Rib-to-Floorbeam Weld Cracking 

As discussed in other sections of this manual, there are a number of modes of fatigue cracking at 
the RF joint that may occur. Considering the many variations of this detail, the source of 
cracking is also quite varied. As with most cracks, hole-drilling often provides a useful and 
simple method of repair. Such strategies would be very useful in cracks in the wall of the rib as 
one-sided access is all that is likely to be available. Cracking in the FB or web plate can also be 
effectively controlled with hole-drilling in some cases. Of course, for hole-drilling to be 
effective, the driving forces that caused the initial crack must be less than those required to cause 
reinitiation within the drilled hole. In some cases, a pretensioned high-strength bolt, which 
introduces beneficial compressive stresses, should be inserted in the hole to further improve the 
fatigue resistance of the retrofit. Depending on the amount of rib rotation, hole drilling may not 
always be an effective strategy for the same reasons hole drilling is not always effective when 
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used to mitigate out-of-plane distortion cracks in the web of plate girder (i.e., the demand is too 
high). 

Although simple hole-drilling may be effective, other more sophisticated retrofit strategies have 
been developed. (Even if another retrofit strategy is being implemented, a hole should always be 
placed at the crack tip to blunt the crack.)  Kolstein (2008) illustrates several concepts and 
strategies that appear to be effective. These included bolting doubler plates to the web or FB 
plate in the region of the RF, either with or without the cut-out. This retrofit, used in combination 
with hole-drilling, will likely be effective in mitigating fatigue cracks that have grown into the 
FB or web plate.  

Another interesting repair is applicable where the weld between the RF or web plate is cracking. 
It can also be effective where a cut-out has or has not been used. The retrofit essentially consists 
of a welded one piece “jacket” that fits around the rib and includes a portion of a FB plate. The 
two components (the jacket on the web and the plate that is in the same plane as the FB or web 
plate) are welded together before installation. Once fabricated, the piece is bolted to the rib and 
FB or web plate and effectively bypasses the original connection. The detail would be installed 
on both faces of the FB or web plate. Schematics of the detail are presented in Kolstein (2008). 

Failure of the FB may be due to the presence of an internal rib bulkhead, causing high in-plane 
stresses in the web. Cracking occurring at the toe, or root, of the FB means that the weakest link 
is impacted by VQ/I effects. This condition requires replacement of the web with a thicker one. 
Investigation would be required as to whether this could create unacceptable out-of-plane 
bending. In any case, it would be an expensive endeavor. It could be studied whether better 
transition would be beneficial. If the expected life is of short duration, or the cracking is expected 
to proceed at a faster pace than manageable, redesign and replacement are necessary. 

Root cracking is likely to be caused by a large gap of unwelded material. It could be improved or 
completely resolved by gouging and back-welding with larger welds, as long as the FB web is 
thick enough to prevent toe cracking. 
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9. WEARING SURFACES 

9.1.  INTRODUCTION TO WEARING SURFACES 

Wearing surfaces serve several important purposes. Primarily, they provide a skid resistant 
surface with good ride quality. They also provide corrosion protection to the deck plate, level out 
deck plate irregularities, and potentially contribute to increased fatigue life of the deck plate.  
The latter benefit arises from a resulting reduction in stress levels in the steel plate as compared 
to a bare surface. Desirable characteristics include light-weight, stability, and stiffness over a 
wide temperature range, long-term durability, good bond to the deck plate, resistance to 
shoving/rutting, crack-resistance, superior fatigue response, ease of application, and maintenance 
(Rigdon, 1990). As one selects a wearing surface system for an orthotropic steel deck (OSD), it 
is important to understand the mechanical behavior of the wearing surface system from a 
materials perspective, as well as from a structural perspective. This dual perspective is important 
to understand, as most surfacing materials are rigidly bonded to the steel deck plate and act as a 
composite system. Table 9-1 summarizes desirable characteristics in a wearing surface system 
for use on OSDs. Wearing surface materials are applied as complete systems, comprising some 
of the following components:  

• waterproofing membrane that also provides corrosion protection. 
• bond coat facilitating composite action of the wearing surface with the deck plate. 
• leveling layer that evens out deck welds and irregularities. 
• wearing surface layer that may include embedded surface aggregates to enhance skid 

resistance. 
 

Table 9-1 Desirable Characteristics in a Wearing Surface System 
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9.2. POPULAR CLASSIFICATION AND SUCCESSFUL APPLICATION OF WEARING 
SURFACE SYSTEMS 

Proper selection, placement, and maintenance practices of surfacing systems should form an 
integral part of OSD design (Gopalaratnam et al., 1993). Many types of classifications can be 
used for wearing surface systems, including: 

• Primary surfacing materials such as polymers concrete, asphalt concrete, Portland cement 
concrete, and various combinations of these materials. 

• Wearing surface thickness from thin ranging from 9 mm to 15 mm (3/8 inch to 19/32 inch), 
and thick ranging from 30 mm to 60 mm (1 3/16 inch to 2 3/8 inch). 

• Reinforced versus unreinforced systems.  
 

Some surfacing systems that use a combination of bituminous and epoxy resin (polymer) as 
binder (e.g. epoxy-asphalts) defy such generalizations. Similarly, composite systems using a 
Portland cement concrete layer, anchored using shear studs to increase deck rigidity and topped 
with asphalt ride surfaces, also make unique classification difficult. Another classification of 
surfacing system used in published literature is based on whether the binder used is 
“thermoplastic” or “thermosetting” (Seim and Ingham, 2004). Thermoplastic materials soften, 
deform, and melt with heat. Surfacing using such binders can rut and shove when subjected to a 
combination of high deck temperatures (60º–70º C) and wheel loads (like some asphalt-based 
wearing surface systems described in Section 9.2.1). Regardless of the classification used, it is 
important to understand how different wearing surface systems perform under a combination of 
mechanical and thermal loads due to composite action with the steel deck plate.  

This section presents a brief review of the relevant mechanical and physical properties of the two 
predominant types of wearing surfacing systems: (1) bituminous surfacing systems, including 
mastic asphalts, latex-modified asphalts, and reinforced asphalt systems; and (2) polymer 
surfacing systems, including epoxy-resins, methacrylates, and polyurethanes. Although not 
mandatory, many bituminous surfacing materials used on OSD bridges are 50 mm (2 inches) or 
greater in thickness, while most polymer surfacing materials are 15 mm (19/32 inch) or less in 
thickness. Since epoxy-asphalt systems are typically 50 mm (2 inches) or thicker, for the 
purposes of discussions in this chapter, this type of surfacing is included along with bituminous 
surfacing. The above generalizations are useful to understand influence of the important 
parameters that affect performance of surfacing materials and OSDs, even if they defy easy or 
unique classification.  

Table 9-2includes summary information on different wearing surface systems successfully used 
in select bridges in the United States and abroad.   Remarks regarding their performance while in 
service are also provided. While not exhaustive, the list demonstrates the diverse options in terms 
of wearing surface types and thicknesses, deck plate thicknesses, and differing conditions of 
environmental exposure and vehicular loading patterns. 
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Table 9-2 Examples of Successful Wearing Surface Systems  
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Figure 9-1 shows schematics and details of the component layers in two typical thick (asphalt-
based [a, b]) and two thin (polymer concrete [c, d]) wearing surface systems. The 60 mm (2 3/8 
inch) thick mastic asphalt systems, as seen in Figure 9-1a, have been successfully used in Europe 
(Great Belt East Bridge in Korsor, Denmark). The 50 mm (2 inch) thick epoxy asphalt wearing 
surface systems in Figure 9-1b have been used successfully in many orthotropic bridges in 
California (Coronado Bay Bridge, San Mateo Bridge, and Golden Gate Bridge). The 12 mm 
(15/32 inch) polymer concrete wearing surface system in Figure 9-1c, a polymer concrete slurry 
system) has been successfully used on the Poplar Street Bridge in St. Louis, Missouri. The 9 mm 
to 10 mm (11/32 to 13/32 inch) polymer concrete wearing surface system in Figure 9-1d is a 
multi-layer polymer concrete using the broom and seed method of placement (painting or 
brushing on a clean substrate and casting sand on the resin) and has been used more recently in a 
few New York Bridges (East River Suspension Span of Triboro [now Robert F. Kennedy] 
Bridge and Bronx-Whitestone Bridge). 

 

Figure 9-1 Typical Component Layers in (a) Mastic Asphalt, (b) Epoxy Asphalt, (c) 
Polymer Concrete (Slurry Method of Placement), and (d) Multi-Layer Polymer Concrete 

(Broom And Seed Method Of Placement) 

9.2.1.Bituminous Surfacing Systems 

These types of surfacing systems include materials where the primary binder is asphalt-based. 
The surfacing systems, which are typically thick (50 mm [2 inches] or greater) and applied while 
hot, have performed well on relatively rigid decks plates. Stiffness characteristics of such 
surfacing systems are influenced very significantly by temperature, as discussed later. Limited 
results are also available to show strain-rate sensitivity of the elastic modulus. At cold 
temperatures, the contribution of the surfacing to the flexural stiffness of the composite deck is 
significant due to the reasons described earlier. Among the thermoplastic surfacing systems, 
Gussasphalt, a poured asphalt developed in Germany, uses low penetration-grade bitumen. This 
is a very hot and dense void-less mix requiring special procedures and equipment for placement. 
Such surfaces were popular in Germany and Japan in the 1960s. Mastic asphalts, popular in the 
1980s and 1990s in Europe and Japan as surfacing for major suspension bridges, use higher 
binder content than the poured asphalt. This type of surface also requires special paving 
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equipment for placement. Neither of these types of surfacing has been used in major OSDs in the 
United States. Conversely, a hot-mix asphalt surfacing comprising epoxy resin and bituminous 
hardener, resulting in a thermosetting binder surfacing popularly called “epoxy-asphalt,” has 
been used in several major bridges in the United States, including several bridges in California. It 
has been used more recently in bridges in China and South Korea. There has been only limited 
success with conventional asphalt or asphalt modified with latex or other similar additives as 
surfacing for OSDs. A good survey of surfacing materials used worldwide can be found in 
Touran and Okereke (1991), Gopalaratnam et al. (1993), Hulsey et al. (1999), and Wolchuk 
(2002), even if each of these lists are not exhaustive by themselves. Rutting, shoving, and tensile 
cracking are among the common types of failures observed in some thick bituminous surfacing 
systems placed on OSDs. 

9.2.2. Polymer Surfacing Systems 

Two types of polymer surfacing systems include: slurry systems where fillers are integrally 
mixed with polymers and placed on the steel deck plate, with additional aggregates embedded on 
the surface to provide the requisite traction; and surfacing systems built-up in layers with 
alternate layers of neat polymers and surface embedded aggregates. Polymer surfacing systems 
are typically thin (10 mm to 15 mm) and applied after cold mixing. Such thin surfacing materials 
do not contribute very much to the deck stiffness, even at colder temperatures, and hence do not 
contribute to reduction in steel plate stresses when subjected to dynamic wheel loads. On the plus 
side, they contribute to a reduction in dead loads on the deck and hence may offer unique 
opportunities to increase fatigue life (by reducing inertial loads) of older bridges needing 
replacement surfaces. They also offer opportunities for prefabrication of composite deck panels 
(Weidlinger Associates, Inc., 2002) (Wolchuk, 2006) for new bridge decks (factory-produced 
steel deck panels with pre-placed wearing surface) with better quality control of the placement 
surface (clean and dry shot-blasted white metal surface with prescribed roughness), and 
environmental conditions (dust-free, dry, and optimum placement temperature). Most of the 
polymer surfacing materials used on OSDs are of the thermosetting type. These include epoxy 
resins, polyurethanes, and methacrylates. Tensile cracking, loss of surface aggregates, and 
delamination of the surfacing from the steel deck plate are common types of failures observed in 
some thin polymeric surfacing systems. 

9.2.3. Concrete Surfacing Systems 

Concrete overlays and wearing surfaces have been used for bridge decks, including steel grid 
decks, for a long time, however only in the last decade have concrete and reinforced concrete-
wearing surface systems been researched systematically for use on thin OSDs (Cao 1998, De 
Jong and Kolstein (2004), Walter et al. (2007), Buitelaar and Braam (2008), Kolstein and 
Slidrecht (2008), Braam et al. (2008), and Kondo, Goto and Iwashita (2008). Several OSDs in 
the Netherlands were retrofitted with reinforced high performance concrete (RHPC) overlays 
from 2003 to2008 (Buitelaar and Braam 2008). The Caland Bridge was used as a pilot project for 
the implementation of the RHPC wearing system in 2003. Several applications of the RHPC 
wearing surface system have been successfully completed since, including the Moerdijk bridge 
and the Hagenstein bridges. The RHPC wearing surface system in both these bridges replaced an 
older 60 mm (2 3/8 inch) mastic asphalt wearing surface. The RHPC wearing surface system 
typically comprises a 4 mm (5/32 inch) bonding layer of epoxy with embedded aggregates to 
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provide mechanical bonding with the 60 mm (2 3/8 inch) layer of reinforced high performance 
concrete. A minimum concrete compressive strength of 50 MPa (7.25 ksi) was required before 
the RHPC wearing surface was opened to traffic on the Hagenstein Bridge. The reinforcement 
consisted of three layers of reinforcement rolls (8 mm [5/16 inch] bars at 50 mm (2 inch) spacing 
(Buitelaar and Braam, 2008). Later wearing surfaces used less reinforcement to cut down on 
reinforcement congestion and mitigate the difficulty in placing a “zero” slump HPC mix. All 
RHPC wearing surfaces were placed using a temporary hemispherical tent to control the 
placement and curing environment (moisture and temperature protection).  

A 70 mm (2 ¾ inch) thick Steel Fiber Reinforced Concrete (SFRC) wearing surface was used for 
the Shonan Ohashi Bridge near Tokyo, Japan, in 2005, replacing a 70 mm (2 3/4 inch)  asphalt 
wearing surface. The objective in this case was to provide stiffness to a 12 mm (15/32 inch) deck 
plate, which had experienced fatigue cracking in the deck plate. Bonding of the wearing surface 
to the deck was achieved through welded shear studs and a layer of epoxy waterproofing 
(Kodama et al., 2008). The SFRC also uses a mat of carbon fiber reinforcement (100 mm x 100 
mm [4 inches x 4 inches]). The matrix of the wearing surface comprises ultra-rapid hardening 
cement concrete (with a design strength of 24 MPa [3.5 ksi] in 3 hours).  

These recent concrete wearing surfaces, including conventional and hybrid reinforcement, offer 
good opportunities, particularly for retrofit and upgrade projects where deck stiffening is desired. 

9.3. TEMPERATURE-DEPENDENT PROPERTIES OF WEARING SURFACES 

The temperature dependence of wearing surface properties, particularly the elastic modulus, 
plays a significant role in the stress magnitudes in both the wearing surface and deck plate, and 
hence their fatigue life as well. It is important to understand how different surfacing materials 
behave at various temperature ranges and at different loading rates in order to engineer an 
integral surfacing-deck plate composite system (Kolstein and Wardiner, 1997, Wolchuk, 2002). 

Figure 9-2 shows typical variations in elastic moduli of surfacing materials as a function of test 
temperature, as compiled by Wolchuk (2002) from numerous investigations. The surfacing 
materials in all cases were subjected to flexural tensile stresses. Results are back-calculated for 
some surfacing materials from tests on composite specimens comprising steel-plate and wearing 
surfaces. Also, since test geometries, controlled thermal environment, and loading rates (static 
and dynamic test frequencies of 1 Hz – 30 Hz) are not readily comparable among the different 
referenced studies, the actual magnitudes of the modulus may not be directly comparable. 
Despite these differences, observations of the relative performance of the different surfacing 
materials provide some useful information. Asphalt surfacing exhibits a more significant 
influence of temperature on the elastic modulus compared to polymer surfacing. The elastic 
modular ratio, n (Esteel/Ewearing surface), of steel to surfacing can vary by more than an order of 
magnitude in the range of temperatures normally expected on bridge decks. At the hot 
temperatures, there is little difference in elastic moduli of the different wearing surface materials. 
At the cold temperatures, asphalt surfacing can contribute significantly to composite stiffness of 
the deck system, both due to a larger elastic modulus and due to the typically thicker section used 
for such materials. 
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Figure 9-2 Elastic Moduli of Surfacing from Tests of Composite Specimens with Surfacing 
in Tension (Wolchuk, 2002) 

It should be noted that almost all of the surfacing materials typically used as wearing surfaces for 
OSDs exhibit visco-elastic behavior at room temperature (both viscous, i.e. time-dependent, and 
elastic, i.e. instantaneous linear deformation on load application and recovery on unloading). At 
the cold temperatures, their response is largely elastic. Additionally, several of these materials 
also exhibit modulus values that are different in compression and tension (Cao, 1998). These 
characteristics (temperature-dependent modulus, visco-elastic behavior exhibiting rate-sensitive 
modulus, differences in modulus values in compression and tension) have yet to be 
systematically quantified and understood, make design of wearing surface systems a semi-
empirical undertaking at the present time. 

9.4. BASIC MECHANICS AND GENERAL BEHAVIOR 

OSDs are known for their flexibility relative to other types of commonly-used bridge decks. 
While the stresses in surfacing material in the longitudinal (along the traffic) direction are 
globally compressive in nature, tensile stresses manifest in regions that experience negative 
moments due to bending in the longitudinal direction (e.g. over bridge supports). Tensile stresses 
in the surfacing, however, are predominant due to local transverse (transverse to the traffic) 
direction bending. These stresses in the wearing surface are located immediately over the 
trapezoidal ribs of the OSD in the vicinity of wheel load application. As illustrated in Figure 9-3, 
they are attributed to a combination of effects, including (a) transverse bending of the wearing 
surface-deck plate composite with no significant relative displacement between adjacent 
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trapezoidal stiffening ribs, and (b) additional stresses due to relative displacements between 
trapezoidal ribs and associated shear effects. The first effect is more likely dominant in the 
vicinity of the transverse FBs, where there is little relative vertical displacement between 
adjacent legs of the trapezoidal stiffeners (Figure 9-3a). A combination of the two effects is more 
likely midway between two adjacent FBs (Figure 9-3b). The second effect is more pronounced 
where stiffness differences between the web of the main girder and the adjacent trapezoidal rib is 
significant (Figure 9-3c). Cracks in the wearing surface can develop longitudinally immediately 
over the stiffeners (both main girder web as well as trapezoidal ribs). 

 

Figure 9-3 Transverse Bending of the Wearing Surface-Deck Plate Composite Showing 
Flexural and Additional Shear Effects Depending on Relative Vertical Displacement 

Between Stiffeners. (a) Closer to the Floorbeams, (b) Midway Between Floorbeams, and (c) 
In the Vicinity of the Main Girder Web (Wolchuk, 2002) 

Stress analysis of the wearing surface is complicated due to location-dependent stiffness 
variations in the deck plate, elastic and thermal mismatch of “wearing surface–deck plate,” 
visco-elastic behavior of the wearing surface, and dynamic/fatigue loading typical in such 
applications. Despite these complications, it is possible to consider reasonable idealizations for 
analytical purposes to provide estimates of stress magnitudes for practical design. Semi-
empirical approaches to establishing stress magnitudes in the wearing surface have been used 
(Hartnagel et al., 1991) (Hartnagel, 1993) (Cao, 1998).  

Modeling using elaborate 3-D finite element approaches has also been used with custom 
geometries for the decks under consideration (Hulsey et al., 1999) (Seim and Ingham, (2004). 
Given the need for numerous idealizations in the material and numerical models and 
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complexities of the various boundary conditions and loading parameters involved, the accuracy 
of stresses from a more involved 3-D finite element investigation may not normally be 
warranted. A simplistic mechanics model of composite action in the wearing surface-deck plate 
system using elastic behavior and a multi-span continuous beam analogy can be very effective in 
establishing stresses in the wearing surface due to wheel loads, as discussed next. The basic 
model, popularly termed “finite strip model” is not new or unique to analysis of stresses in 
wearing surfaces of OSDs, but has been used extensively in analysis of one-way bending in 
reinforced concrete slabs. 

9.4.1. Transverse Bending and Relative Deck Displacements 

Analysis of stresses in the surfacing material from transverse bending can be accomplished using 
a composite continuous beam-analogy model with adequate consideration of deck-plate 
thickness effect, as well as relative settlement of supports (between trapezoidal ribs or between 
rib and the main girder web).  

This section will address the complexities of stress computations in the surfacing material while 
incorporating the surfacing-deck-plate composite action due to local transverse bending action in 
the vicinity of the wheel loads. Additional effect of shear due to relative deformations between 
the trapezoidal ribs will also be presented and analyzed.  

Stresses in the wearing surface due to transverse bending (assuming idealized ‘one-way” action, 
Figure 9-4), can be estimated using the “finite strip” approach, as illustrated in the schematics 
shown in Figure 9-5. Modeling the wearing surface-deck plate system as composite multi-span 
continuous beam captures, the localized transverse bending effects reasonably accurately 
(Rigdon, 1990) (Rigdon et al., 1991) (Gopalaratnam et al., 1993). The number of spans used to 
compute stresses does not affect the computed stress magnitudes significantly, as long as edge 
effects from supports too close to the loading patch are eliminated by using between five to 
seven spans as verified by Rigdon (1990). Shear and moment envelopes can be established for 
desired loading per AASHTO LRFD Bridge Design Specifications by placing load patches to get 
maximum positive and negative moments at critical locations (over longitudinal stiffeners), as 
illustrated in Figure 9-5a and Figure 9-5b. Applicable load factors also need to be applied to 
account for impact, multiple presence factor, and live load factor.  

The supports in Figure 9-5 represent stiffener locations in the OSD. It is recommended that such 
analysis of stresses in wearing surface also consider cases that include yielding supports to model 
permissible differential deflection between trapezoidal ribs, per AASHTO LRFD Bridge Design 
Specifications (Figure 9-5c). 
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Figure 9-4 Idealized Multi-Span Continuous Beam Model of the Wearing Surface-Deck 
Plate Composite Used to Analyze Stresses in the Wearing Surface Due to Localized 

Transverse Bending (Gopalaratnam Et Al., 1993) 

 

Figure 9-5 Finite Strip Models for Computing Stresses in the Wearing Surface with 
Different Loading Conditions to Generate Maximum Moment and Shear Force Envelopes: 

(a) Maximum Positive Moment Midway between Stiffeners; (b) Maximum Negative 
Moment at Stiffeners; (c) Stresses in the Wearing Surface Due to Combination of Loads 

and Yielding of Supports (Differential Movement between Stiffeners) 
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9.4.2. Surfacing Stresses and the Effects of Deck Plate and Wearing surfaces Thickness 

Once shear force and bending moments envelopes are established based on the prescribed 
loading using finite strip analysis, as described earlier, it is possible to compute: 

• shear stresses: at the interface between the wearing surface system; the steel deck plate;  
• tensile stresses: in the wearing surface using elastic analysis of the wearing surface; steel 

deck plate composite (using transformed section analysis).  

These stresses, it should be noted, account only for static elastic behavior at the prescribed 
temperature. These stress magnitudes will depend on temperature, as described earlier, and 
location-specific temperature extremes are to be used to investigate expected stress ranges due to 
daily and seasonal temperature excursions.  

In addition to static wheel loads and composite action with the deck plate, thermal loads, and 
elastic mismatch between the deck plate and the surfacing material, one also needs to use 
engineering judgment to allow for fatigue effects that should be incorporated in the design of 
wearing surface systems. Presently this can only be accomplished in a semi-empirical manner by 
conducting flexural fatigue tests of composite specimens, comprising custom wearing surface 
systems applied to steel plate of the same thickness as the deck plate. Results from such flexural 
fatigue tests conducted under prescribed temperature conditions, together with service traffic 
data (average daily traffic, percent truck traffic, associated load information) allow one to 
establish approximate fatigue life of the wearing surface. Additionally, engineering judgment 
should be applied considering the effects of ageing on the material may negatively affect the life. 

Even while it is not easy to estimate fatigue life of a wearing surface system for OSDs, the 
importance of this characteristic of a wearing surface system cannot be overemphasized. 
Typically, if it is estimated that trucks will produce about half a million heavy-wheel loads a 
year, or 10 to 15 million fatigue cycles within the surfacing service life of 20 to 30 years. This is 
the fatigue and structural demand on the surfacing. The bridge designer or owner should select a 
target service life for the surfacing, just as a target service life of the bridge is selected at the start 
of the bridge design process. The next step is to make bridge-specific calculations of the 
demands that traffic will impose on the bridge, using the best estimate of future traffic to find the 
number of fatigue cycles the wearing surfacing will experience during the selected service life of 
the surfacing. This is the fatigue demand that the surfacing must resist. 

When a separate waterproofing membrane or bonding layer is used on the steel deck plate, it has 
been observed that composite interaction between the wearing surface and the steel deck plate is 
significantly reduced. This is largely because the bonding layer is relatively compliant due to use 
of a low modulus material or a thick layer, or both. In such cases, one can expect the wearing 
surface to be subjected to smaller strains compared to when no bonding layer (or a stiff bonding 
layer) is used. Zinc primer or coatings of polymeric resins have often been used to protect the 
deck plate from corrosion before the wearing surface is placed on the deck. In addition to 
potential protection against corrosion of the deck plate, the advantage of using such a layer 
includes reduced tensile cracking in the wearing surface. The obvious disadvantage is a less stiff 
composite system where the wearing surface and the deck plate resist bending independently. In 
extreme cases, this soft layer can also lead to potential delamination of the wearing surface from 
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the steel deck. Figure 9-6 illustrates experimentally-measured strains along the depth of the 
wearing surface, bonding layer, and steel deck plate highlighting the nonlinear strain distribution 
and “shear lag” effect. It is possible to compute stress distributions in the composite system using 
simple mechanics, knowing the elastic and thermal properties of the deck plate, the bonding 
layer, and the wearing surface based on the applied bending moment. 

 

Figure 9-6 Experimentally Measured Strains along the Depth of the Wearing Surface in 
Thick Mastic Asphalt for Different Loading Cases Exhibiting Nonlinear Strain 

Distribution (Hemeau Et Al., 1981) 

The influence of wearing surface stiffness on the stresses in the deck plate has been well 
documented both experimentally (Hauge, 1998) and analytically (Wolchuk, 2002) 
(Gopalaratnam, 2009). Figure 9-7 shows analytically-computed variations in steel deck plate 
stress and stress in the wearing surface as a function of the modular ratio (n = Esteel/Ewearing 
surface) for thin (10 mm [3/8 inch]) and thick (50 mm [2 inch]) wearing surfaces. Figure 9-7a is 
for a steel deck plate of 14 mm (9/16 inch) thickness (based on the plot in Wolchuk, 2002), 
whereas Figure 9-7b is for a steel deck plate of 20 mm (25/32 inch) thickness. Both plots are 
made for an assumed negative moment (causing tension in the wearing surface) magnitude of 
4,000 N-mm/mm and are plotted to the same scale. In each case, wearing surface stresses are 
plotted on the left axis while the steel deck plate stresses are plotted on the right axis. The elastic 
modulus of the wearing surface is temperature dependent, as observed earlier. At hot 
temperatures, the wearing surface contributes very little to the stiffness of the composite (steel 
stress of 122 MPa (17.7 ksi), approximately comparable to that without any wearing surface for 
the 14 mm (9/16 inch) deck plate and of 60 MPa (8.7 ksi) for the 20 mm (25/32 inch) deck 
plate), whereas at cold temperatures, the contribution of the wearing surface to the composite 
stiffness is significant enough to influence the stresses in the deck plate. This influence, as 
observed from Figure 9-7, is more significant for the thick wearing surface (lws = 50 mm [2 
inches]) than for the thin wearing surface (lws = 10 mm [3/8 inches]). The reduced steel stress is 
likely to result in improved fatigue life of the deck plate. Figure 9-7 also highlights the effect of 



178 
 

cold temperature on stresses in the wearing surface. The larger stresses expected in the wearing 
surface at the cold temperatures are likely to increase the potential for tensile cracking. This is 
particularly significant for the thin surfacing. To mitigate this potential for cracking at cold 
temperatures, use of low-modulus surfacing is recommended. A multi-layer build-up of polymer 
surfacing discussed earlier or use of less aggregates and more binder in the slurry type systems 
will result in low-modulus thin wearing surfaces. 

 

(a) 

 

(b) 
Figure 9-7 Stresses in Thick and Thin Wearing Surfaces due to Variations in the Elastic 

Modular Ratio, n, for (a) Thin Deck Plate (14 Mm [9/16 Inches]), and (b) Thick Deck Plate 
(20 Mm [25/32 Inches]) 
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A comparison of steel and wearing surface stress magnitudes for the 14 mm (9/16 inch) thick 
deck plate and 20 mm (25/32 inch) thick deck plate clearly shows the benefits of using thicker 
deck plates. When life-cycle costs are considered, it is likely that the benefit of longer fatigue 
lives for both the deck plate as well as the wearing surface will outweigh the increased initial 
investment. It is also interesting to note that when modular ratios are higher than 50, wearing 
surface stresses are not very sensitive to either the wearing surface thickness or deck plate 
thickness. Summer deck temperature extremes are likely to result in such modular ratios. 

9.4.3. Limit States in the Different Types of Surfacing Systems 

The limit states (failure modes) observed in surfacing systems depend on the type and thickness 
of the wearing surface. Even while generalizations may not be always be applicable in all cases, 
generally thin polymeric concrete wearing surfaces often fail due to tensile cracking, 
delamination due to local shear at the interface with the deck plate, or debonding of large chunks 
of the surfacing material. Generally, thick asphalt wearing surfaces often fail due to shoving and 
rutting resulting from inelastic deformations from braking/lane-changing loads on the surface. 
Tensile cracking has also been observed in thick surfacing. 

9.5. DESIGN AND DETAILING 

The design of wearing surface systems to-date has largely been semi-empirical and based in part 
on field and laboratory testing of wearing surface systems, testing of wearing surface-deck-plate 
composite specimens, and idealized analysis of plate bending. Composite action, bi-axial fatigue 
loading, influence of thermal and elastic mismatch between the surfacing and the deck plate, and 
visco-elastic behavior of the surfacing material complicate the analysis of stresses in the wearing 
surface. Despite these complexities, it is possible to approximate ranges of stresses in wearing 
surface systems to facilitate design that withstands specified service loads and estimate 
approximate fatigue life. Experience indicates that wearing surfaces have performed well when 
thicker (5/8”+) deck plates are used. 

9.6. TESTING OF WEARING SURFACES 

Engineering design of wearing surfaces to date has relied very heavily on customized testing. 
This has been necessary because, as noted earlier, the performance of wearing surfaces depends 
on thickness of the steel deck plate, type and thickness of wearing surface, typical temperature 
ranges likely to be experienced by the wearing surface, steel plate composite, temperature-
dependent elastic modulus of the wearing surface, and the location-specific fatigue loading 
characteristics of the bridge deck (a function of strain magnitudes from specified wheel loads and 
local traffic pattern, which is a function of volume of truck traffic compared to total traffic). 
These parameters influence the overall performance of the wearing surface steel-plate composite 
system in an inelastic and coupled manner making simplified generalized analysis nearly 
impossible. Despite the complexities in allowing generalizations, wearing surface testing can still 
be effectively used to (1) evaluate the relative performance of different wearing surface systems 
subjected to a prescribed set of test parameters for a particular orthotropic bridge, (2) accept 
minimum specifications of a wearing surface system in simplified fundamental tests to ensure 
proper design performance, and (3) monitor service performance allowing timely maintenance 
with a view to improve ride quality and enhance service life. Three of the commonly used tests 
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described below have been employed for one or more of the above purposes. In addition, full-
scale laboratory testing of composite bridge deck panels (Hague, Denmark) and experimental 
wearing surface test sections on OSDs subjected to service loads and temperatures 
(Gopalaratnam et al.) have also been successfully employed to evaluate the performance of 
different wearing surface systems. While practical, cost considerations may preclude such full-
scale testing in many projects. When possible, they are likely to simulate the most realistic 
testing conditions to evaluate performance of wearing surface systems. 

9.6.1. Flexural Testing 

Small-scale laboratory flexural testing has often been used to simulate tensile stresses in the 
wearing surface over trapezoidal rib stiffeners and over the web of the main structural girder. 
This test can also be designed to reproduce the interfacial bond stress between the wearing 
surface and the steel deck plate. Figure 9-8 shows a typical loading geometry used for evaluation 
of different types of wearing surfaces using a composite specimen. Steel plate thickness to be 
used for fabricating the composite specimen must be identical to that used for the bridge deck. 
Steel tabs welded to the plate at its two ends simulate the stiffening provided by the trapezoidal 
ribs in the bridge deck. These tabs are also used to support the composite specimen, as shown in 
Figure 9-8, using four rollers, two on each side of the specimen. The loading span used is to be 
identical to rib spacing on the bridge deck (a 13 inch span used in the illustration represents 13 
inch trapezoidal rib spacing on the Poplar Street Bridge, Gopalaratnam et al., 1993). The wearing 
surface is to be placed on the specimen steel plate in a manner identical to that expected to be 
used on the bridge deck. The thickness and composition of the wearing surface should be 
identical to that planned for application on the bridge. If corrosion protection coating or 
waterproofing membranes are to be used on the deck, then similar coatings/membranes should 
also be used while fabricating the laboratory specimens. A nominal width of the specimen of 4 
inch is used here to allow for representative wearing surface characteristics to be captured. This 
dimension is a compromise between observing edge effects from using too small a width, and 
requiring significantly larger loads while using larger widths. 

The test configuration in Figure 9-8 allows convenient inspection of the wearing surface for 
cracking and delaminations. Parameters typically monitored include load applied, specimen 
deflection at midspan (on both sides along the width), end-slip between wearing surface and the 
steel plate at either end along the specimen length, and electrical continuity of the wire glued on 
the top of the wearing surface. Load-deflection response in static tests or specimen stiffness and 
its degradation in fatigue tests (computed as ratio of load range versus deflection range) are 
typically recorded in real-time during the test. Cracking can be monitored either through a drop 
in the composite stiffness or via electrical continuity of thin wires glued on the top of the 
wearing surface. Delamination can be monitored using transducers to measure relative slip 
between the wearing surface and the steel plate (Gopalaratnam et al., 1993). 
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Figure 9-8 Recommended Laboratory Test Configuration for the Wearing-Surface – Steel 
Plate Composite Specimens Subjected Simultaneously to Prescribed Temperature History 

and Flexural Fatigue Loading (Gopalaratnam et al., 1993) 

Loading can be static (linear ramp loading) or fatigue with specified upper and lower limit loads 
(sinusoidal loading at a prescribed frequency) depending on the specific test requirements. Often 
it is convenient to use servo-controlled electro-hydraulic test equipment for flexural testing of 
wearing surface steel-plate composite specimens. However, it may also be possible to adapt 
other conventional machines (non-servo-controlled or electro-mechanical testing machines) to 
conduct such tests. Static tests can be used to calculate static elastic modulus of the wearing 
surface as a function of test temperature from the stiffness characteristics of the composite 
flexural test. Results from such tests can also be used to determine cracking strain or debonding 
strains as a function of test temperature. Fatigue tests can be used to measure dynamic modulus 
of the wearing surface as a function of test temperature. These tests can also be used to establish 
overall fatigue performance and to estimate service life under prescribed test conditions.  

It is convenient to test multiple composite specimens in parallel at one time using displacement 
control (to simulate equivalent load control, by using a stiff distributor beam and soft load cells 
to measure individual specimen loads) if replication is desired to facilitate testing of a 
statistically significant number of specimens for the fatigue test program (see Figure 9-9, Rigdon 
et al., 1991). Simulating Load control while displacement control is used can be ensured by using 
soft load cells in series with each specimen.  This allows cracking of one specimen to not 
influence loads on the other specimens. 

While testing one specimen at a time, load control is often used to achieve desired levels of 
wearing surface stress in either static or fatigue tests.  

Tests can be conducted in a constant temperature environment (room temperature, or prescribed 
extremes of cold or hot temperatures) or in temperature-varying environments to simulate ranges 
of temperatures that the bridge deck is normally likely to experience while in service. 
Temperature-controlled tests are conducted by using insulated chambers enclosing the test 
specimens (Figure 9-9) along with appropriate control programs to heat and/or cool the test 
chamber. 
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Figure 9-9 Simultaneous Testing of Multiple Replicate Specimens to Simulate Load (Stress) 
Control (Rigdon Et Al., 1990) 

Figure 9-10 shows results from a constant temperature test (cold temperature of -18°C [-0°F]) 
where the relative specimen stiffness (ratio of current stiffness to the stiffness of the virgin 
specimen) is plotted versus number of fatigue cycles (at 5 Hz) for a composite polymer concrete-
steel-plate composite specimen (graph on the left). The upper limit load in this test was increased 
by 150 lbs (0.67 kN) after every 70,000 fatigue cycles until cracking was observed in the 
wearing surface. The sudden drop in relative stiffness during this cold-temperature fatigue test 
can be readily observed, highlighting the critical combination of upper limit fatigue load and test 
temperature that is likely to cause cracking in the wearing surface.  Typically, specimens are not 
aged since it is practically unrealistic given the numerous parameters that need to be studied 
(temperature fatigue, freeze-thaw, etc.) in tests of the wearing surfaces.  

Results from an alternate test are shown in the right graph of Figure 9-10 where the upper limit 
load (1,450 lbs [6.45 kN]) and lower limit load (150 lbs  [0.67 kN]– enough to ensure no slack 
on unloading) are held constant during the fatigue test at 5 Hz. The test chamber temperature is 
varied to simulate real-time variations in summer and winter deck temperatures. Again, the plot 
shows variation of relative stiffness (ratio of current stiffness to initial stiffness) with number of 
fatigue cycles. First detection of cracking occurs in this test when the specimen is subjected to 
the prescribed fatigue loading and the coldest temperature (-18°C [0°F]) of the test. 
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Figure 9-10 Cold Temperature Fatigue Tests on Composite Specimens with Incrementally 
Increasing Upper Limit Load (Left) and Temperature Varying Fatigue Test at Fixed 

Upper and Lower Limit Loads (Gopalaratnam Et Al., 1993) 

9.6.2.Tensile Bond Testing 

Bond test using a tensile pull-out loading configuration (Figure 9-11) has been used for 
acceptance testing of polymer concrete wearing surfaces on OSDs (Gopalaratnam et al. 1993b). 
It is used more as a quality control test to ensure good surface preparation of the steel deck and 
proper placement of the wearing surface to assure minimum specified tensile bond strength. The 
test originally developed for polymer concrete overlays on concrete decks has been adapted for 
use on steel decks, generally following the guidelines described in Appendix A of ACI 503R-93 
(ACI, 2008). 

A 50 mm (2 inch) core (nominal internal diameter of the core drill) is to be drilled at the desired 
test location through the thickness of the wearing surface (until the surface of the steel deck plate 
is reached, see Figure 9-11. Average wearing surface thickness at the core location is to be 
measured after the surface of the core is cleaned for gluing the pipe cap. After adequate curing of 
the glue (typically between 1 1/2 and 2 hours) the core is subjected to direct tensile pull-out loads 
(no twisting or torsional loading allowed) using a loading frame specially designed to be in 
compliance with ACI 503R-93. A manually-controlled tensile loading rate of approximately 89 
N/s (20 lb/s) is recommended in ACI 503R. The loading frame can be equipped with a strain-
gage based load cell or other spring-based mechanical load cells to measure peak tensile pull-out 
load. Peak pull-out load is used to compute average bond strength of the wearing surface-steel 
plate interface, assuming adhesive failure at this interface (failure type 5 in Figure 9-11). In case 
the failure is due to (1) adhesive failure at the pipe cap, (2) cohesive failure in the glue, (3) 
adhesive failure at the wearing surface, or (4) cohesive failure in the wearing surface, the test can 
only be used to establish the minimum tensile bond strength of the wearing surface steel plate 
interface. Details of the failure type and bond strength are normally reported. Acceptance 
specification can require minimum tensile bond strength. Bond tests may be required at a select 
number of locations for a prescribed area of wearing surface placed. 
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Figure 9-11 Bond Test of the Wearing Surface Deck Plate Interface in Direct Tension 
(Gopalaratnam Et Al., 1993) 

9.6.3. Resistivity Testing 

Resistivity tests on the wearing surface-steel plate composites are performed in accordance with 
ASTM D3633-98 (Reapproved 2006). These tests are used to determine the severity of wearing 
surface cracking (Figure 9-12). The test can be adapted for use in small laboratory flexural test 
specimens, while at the same time serving as a good field test of service performance of the 
actual wearing surface. This type of test can detect incipient cracks that are not visible to the 
naked eye. 

In small laboratory specimens (like the specimen used for the flexural test in Figure 9-8) the test 
consists of constructing a dam on top of the wearing surface with non-conducting material, such 
as PVC sheet or plywood along the rectangular edges. Silicone rubber caulking is used around 
the edges to prevent water from reaching the steel plate. Once the caulk has set up, a soap and 
water mixture is placed on the surface of the specimen. Soap is added to minimize the surface 
tension, thus allowing the water to penetrate fine cracks (often invisible to the naked eye), which 
might be present in the specimen. A thin copper plate is attached to a sponge, which is allowed to 
soak in the soap water mixture. This "probe" is attached to one lead of an ohm meter; the other 
lead is attached to the steel plate of the composite specimen. When a reading is desired, the 
probe is taken from the soap water and placed on top of the specimen and the ohm meter is read 
immediately. Readings are typically taken at 1 minute, 10 minutes, 30 minutes, 1 hour, and 2 
hours after the specimen had been saturated with the soap water mixture. With time, the 
measured resistance usually decreases. Results from this test provide a qualitative estimate of the 
severity of cracking in the wearing surface material. Low resistance (less than 10,000 ohms) 
indicates the wearing surface had a crack through the thickness of the wearing surface. A 
minimum resistance of 750,000 ohms is specified as the lowest acceptable value for this 
resistance. The resistance represents a crack-free wearing surface. The same test has been used 
successfully to detect cracking in the polymer concrete wearing surface on the Poplar Street 
Bridge (Gopalaratnam et al., 1993-1995). 
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Figure 9-12 Resistivity Test Used on the Bridge Deck to Monitor Potential Cracking in the 
Wearing Surface (Gopalaratnam Et Al., 1993) 

9.7. CONSTRUCTION 

Different construction techniques have been used for placement of wearing surfaces on OSDs. 
These techniques depend on the type of wearing surface materials used. Popular types of wearing 
surface materials, as described earlier in 9.1, include bituminous, polymeric and cement-based 
concretes.  

Regardless of the types of wearing surface materials used, it is important that the steel deck plate 
be cleaned and shot-blasted to a SSPC SP 10/NACE 2 (standards for protective coatings and 
corrosion mitigation, Steel Structures Painting Council, now called Society for Protective 
Coatings, 2007, National Association of Corrosion Engineers) near-white metal finish and free of 
all visible oil, grease, dirt, dust, mill scale, rust, paint, oxides, corrosion products, and other 
foreign matter. Often a zinc-based primer coat (1 mm to 1.25 mm in thickness) is put down 
immediately following the shot-blasting operation to protect the steel deck from corrosion. 
Beyond these basic deck treatments, there are different approaches used to put down different 
wearing surface materials. Details of the various layers placed in some of the more commonly 
used wearing surface systems are illustrated in Figure 9-1 

Bituminous 

The construction sequence described here for bituminous materials pertains to an epoxy asphalt 
wearing surface, commonly used on many OSD bridges in California. The placement techniques 
for other types of asphalt materials (Mastic asphalt, Gussasphalt, and other similar systems, 
popularly used in Europe) may differ from the process described here. Typically a bond coat, 
approximately 0.68 mm thick, of neat epoxy asphalt (without aggregates or fillers) is sprayed on 
top of the inorganic zinc primer coat. This is followed by the placement of a 25 mm leveling 
course of epoxy asphalt concrete, using conventional asphalt paving machines. A combination of 
pneumatic tire and heavy steel rollers provide the desired compaction of the leveling course. An 
application of a 0.45 mm thick neat epoxy asphalt bond coat precedes the placement of a 25 mm 
wearing course of epoxy asphalt concrete (Figure 9-1b). The wearing course is again compacted 
using pneumatic tire and heavy steel rollers. 
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Polymer 

Polymer concrete wearing surfaces are placed in one of two methods that are distinctly different 
and often dictated by the manufacturers of such systems: the multi-coat overlay method (also 
sometimes called broom-and-seed method); and the slurry method. 

The multi-coat overlay method is a buildup of polymer resin and wearing coarse aggregate, with 
the specified number of coats required to obtain the specified overlay thickness, usually 10 mm 
to 12 mm (3/8 inch to 15/32 inch). This method of application has been successfully used for thin 
overlays on concrete bridge decks for over 20 years. The same method has been used in several 
recent OSDs. Typically the polymer resin is applied using rollers/squeegees (for calibrated 
thicknesses) at prescribed application rates. Coarse aggregates are broadcast after the resin coat 
is partially cured so the aggregates can embed in the resin without complete penetration of the 
resin layer. Controlled dosage rates of applied aggregate ensure complete coverage of the resin 
layer with dry aggregates surface. After the resin is cured, excess loose aggregates are removed 
from surface. A new layer of polymer resin is applied followed by broadcast of additional coarse 
aggregates. This process is repeated several times until the desired wearing surface thickness is 
achieved (typically 3 layers are used to build up the 10 mm to 12 mm [3/8 inch to 15/32 inch] 
wearing surface system). The surface is often sealed with a polymeric resin before the surface is 
opened to traffic. The placement of the multi-coat overlay polymer concrete wearing surface can 
be manual or automated as desired. 

The slurry overlay method is placed in a three-step operation. First, a neat layer of polymer resin 
is placed on the steel base plate to serve as the tack coat (applied at a rate of 35 ft2/gallon, 
providing approximately a 1 mm [0.04 inch] thick layer). This is followed by placement of a 10 
mm (3/8 inch) thick layer of polymer concrete slurry. In addition to the neat polymer as used for 
the tack coat, the polymer slurry contains fine silica sand filler (manufacturer recommended mix 
proportions used for the slurry). Coarse aggregates for the wearing surface are broadcast at the 
rate of 1-3 lbs/ft2, after the slurry layer was cured enough to support the aggregate weight, while 
at the same time being able to embed them. Excess aggregates are brushed off the surface after 
the polymer concrete cures adequately. The surface is sealed with a polymeric resin before it is 
opened to traffic. The placement of slurry polymer concrete wearing surface can be manual or 
automated as desired. 

Concrete 

Reinforced concrete and fiber reinforced concrete wearing surface have been successfully placed 
by combining several conventional methods of construction, both in laboratory (Cao, 1998) as 
well as full-scale field placements (Buitelaar and Braam, 2008 and Kodama et al., 2008). These 
include use of slipform pavers following placement of mesh made from steel reinforcing bars 
(Buitelaar and Braam, 2008). Since the thickness of the reinforced concrete overlay used is 65 
mm (2 ½ inch), clear cover for the reinforcing bars is significantly smaller (6 mm [1/4 inch]) 
than is conventionally used. Deck irregularities are also likely to add to difficulties in placement 
of the wearing surface with tight tolerances. Shear transfer and bonding of the concrete matrix 
wearing surfaces to the steel deck plate have been accomplished by one of two methods. A bond 
coat of epoxy material in which angular aggregates are broadcast (prior to full cure) provides 
mechanical shear transfer to steel fiber reinforced concrete wearing surface, which is placed on 
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top of the bond coat. Alternately, Kodama et al., 2008, also reports  using welded shear studs (40 
mm [1 ½ inch] tall) to provide shear transfer for an 80 mm ( 3 1/8 inch) steel fiber reinforced 
wearing surface that also includes a CFRP (carbon fiber reinforced polymer) reinforcing mesh at 
the mid-surface. Placement of the SFRC wearing surface was accomplished using conventional 
concrete pavers. Conventional floating of the concrete surface and providing a broom finish 
allows good traction for vehicles. 

For many new bridges or re-decking projects involving OSDs, prefabricated steel panels already 
incorporating the wearing surface have been used. The wearing surface in these cases allow for a 
partial placement under quality controlled shop conditions, while allowing cast-in-place final 
layers to improve ride quality, as well as facilitate field welding of the prefabricated panels. 

9.8. MAINTENANCE AND REPAIR TECHNIQUES 

There is little systematic published information available on the maintenance and repair 
techniques for cracked, delaminated, or spalled wearing surfaces. Information on the 
effectiveness and service lives of such repair techniques are also not available. Based on the 
limited information available, it appears that there are primarily five repair techniques that have 
been used with differing levels of effectiveness and durability.  

1. Cracks over stiffeners have been sealed using a low viscosity sealer that is either bituminous 
(cold pouring type asphalt materials) or polymeric (methacrylates). The sealing mainly 
provides protection against water infiltration and corrosion of the deck plate (and is not 
intended to heal the cracked surface). The service life of such sealing will depend on the 
crack width and the viscosity of the sealants used. It is important that the wearing surface be 
clean (and preferably dry, although some sealers can also be applied when the surface is wet) 
and free of debris. The best sealing is achieved when the crack widths are at the largest (for 
example, when the deck temperatures are at their minimum), as this facilitates good 
penetration depth.  

2. Small delaminations, if detected using an acoustic hammer, can be temporarily repaired by 
injecting polymers/epoxies under pressure. To verify that the entire void under the wearing 
surface is filled, it may be necessary to identify the total area of delamination using 
conventional techniques (such as acoustic hammer or chain drag) and use several outlet vents 
to drive out the air trapped in the delamination. 

3. Larger delaminations or spall areas are repaired by sawing out the damaged wearing surface 
and replacing the patch with the repair materials (often the original wearing material if 
practical or alternate polymer/epoxy concretes that may facilitate small scale repairs without 
using heavy equipment). 

4. Placement of overlays or layered buildup of overlays over the damaged wearing surface. This 
repair technique requires that good bond be provided to the damaged overlay and cracks be 
sealed adequately. Reflective cracking may result if placement of the repair material is 
undertaken without sealing existing cracks. 

5. Repair techniques involving full-depth patch replacement (described in 3 above) or cast-in-
place overlay (described in 4 above) can also use a precast plate of the wearing surface. 
Often. since it is difficult to match the surface profile of an irregular deck (for full-depth 
replacement), or damaged wearing surface (for overlays), the bonding of precast plates is 
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primarily suitable for rapid temporary repairs so traffic can safely use the bridge until more 
permanent repairs are completed. 

Limited laboratory studies of the effectiveness of two of the above repair techniques using post 
repair flexural fatigue tests have been reported by Cao (1998). Figure 9-13 shows the flexural 
fatigue specimen used for studying the effectiveness of the direct crack sealing technique. Figure 
9-14 illustrates use of a precast bonded overlay made from a special type of steel fiber reinforced 
concrete called SIMCON, a cement slurry infiltrated steel fiber mat concrete. While both 
techniques provided good laboratory performance, field trials with real traffic, direct tire pressure 
loading, and simultaneous exposure to adverse environmental conditions are probably necessary 
to provide more objective measures of effectiveness and durability of these repair techniques. 

 

 

Figure 9-13 Side Elevation (Top) and Plan View (Bottom) of Fatigue Testing of Repair 
Techniques Used on Specimens with Pre-cracked Wearing Surface (Cao, 1998) 

 

Figure 9-14 Bonding of a Rigid Very Ductile Overlay (Slurry Infiltrated Steel Fiber Mat 
Concrete – SIMCON) as an Alternate Rapid Repair Technique (Cao, 1998)  
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10.  TESTING 

10.1. EXPERIMENTAL TESTING OF DECKS 

The experimental testing of bridge components has traditionally been the business of researchers 
and not practicing engineers. The usual progression is that experimental research leads to design 
rules that are incorporated into the governing design specification, which is then applied by the 
engineering practitioner. However, in the development of orthotropic bridge designs, simple 
comprehensive design rules cannot be developed due to the level of complexity in the behavior. 
In this case, testing can be used as an integral part of the design verification process, with 
application by the engineer. That is, test data can be used in place of conventional engineering 
analysis by structural modeling. This chapter covers the application of experimental testing in the 
development and verification of orthotropic bridge design. This should not be confused with 
production testing employed during the construction phase to ensure quality in materials or 
workmanship. These other types of testing are covered in Chapter 7.  

As described in Chapter 5, the approach to design of the orthotropic bridge can vary depending 
on the level of experimental test data available to the designer. This may include tests conducted 
as part of ongoing work or by application of trusted test data found in the literature. When 
appropriate laboratory tests have been conducted for previous projects on specimens similar in 
design and details to those proposed for a new project, the previous tests may, at the engineer’s 
discretion, be used as the basis for design on the current project per Level 1 design. Testing may 
include fatigue resistance tests on steel details or performance testing on the wearing surface 
systems. 

The precedent for such an approach to design is found in the PTI Recommendations for Stay 
Cable Design, Testing, and Installation (PTI, 2000) for acceptance of stay cable systems. This is 
considered a rational approach since stay cable details are highly repetitive, conventional 
structural analysis has limited applicability, and this eliminates the significant expense and time 
devoted to new acceptance tests for every project.  

One potential problem with application of test data in design lies in the delay of project 
development. Tests can be time consuming, and if a problem is discovered, this may delay the 
project further. Another potential problem is in the interpretation and application of existing test 
data found in literature. The design engineer must be confident that the test fixture and loading 
are representative of the conditions that will be in place for the current application (or at least 
more severe). This is often difficult to ascertain when sufficient details on the test protocols are 
not divulged. The ideal solution to this dilemma would be for a nationally funded research 
program or a commercial fabricator to validate a standard steel panel design through testing, and 
this could be considered as a safe design under certain limitations. Wearing surface systems will 
likely always remain as proprietary items with performance specifications.  

Although performance tests for components and materials used in highway bridges have been 
available for many years, there are no standardized acceptance testing procedures available that 
focus on bridge decks and certainly none specifically for orthotropic steel decks (OSD). 
Consequently, currently neither the AASHTO Standard Specification nor the LRFD Bridge 
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Design Specifications provide guidelines for deck testing. The only known formal specification 
for testing of bridge decks was ASTM Specification D6275-98, which provided some guidance 
for grid decks, although much of the information could be used for other systems. Nevertheless, 
this specification was subsequently withdrawn by ASTM and not replaced. Interestingly, that 
specification did not fully address the Fatigue limit state, which typically controls metal deck 
systems. At the time of this writing (2011), NCHRP Project 10-72 “Bridge Deck Design Criteria 
and Testing Procedures” is in its second phase, and the results are not currently available. 

The primary objectives of NCHRP Project 10-72 are: 1) Determine critical performance factors 
that affect the durability, strength, and design of deck systems; 2) Develop testing protocols that 
can be used to objectively evaluate critical performance factors for deck systems; and 3) Develop 
rational design criteria for various deck systems to address durability, strength, fatigue, 
deflection, and other performance factors. Once completed, the findings of the research are to be 
reduced into recommended revisions to the existing AASHTO LRFD Bridge Design 
Specifications for Highway Bridges. The research is intended to be applicable to all types of 
deck systems.  

Possibly one of the most important factors to consider when developing testing protocols for 
acceptance testing is that all deck systems should demonstrate a uniform level of design 
performance, regardless of the material type or deck system. It has become clear that various 
types of bridge components (e.g. deck systems verses expansion joints) are often held to different 
standards of design, testing, and performance. Hence, the tests must accurately represent in-situ 
conditions and the performance criteria must be developed with careful consideration. This 
includes accurate simulation of specimen size/scale, boundary conditions, load magnitude and 
position, dynamic impact, and numbers of cycles. Obviously, some of these factors are easier to 
simulate than others. The following sections provide suggested guidance on how to include these 
factors in performance testing. 

Lastly, when one considers the cost of fabrication, installation, and user costs associated with the 
construction of a new bridge or the redecking of a major bridge with an OSD, the costs for 
performance testing will likely amount to less than 1 percent of the total cost of the bridge. 
Hence, assuming the testing results in improved long-term performance, the benefits will 
generally far outweigh the initial costs of the testing. 

10.2. FATIGUE TESTING OF ORTHOTROPIC STEEL CONNECTION DETAILS 

A comprehensive summary of the fatigue resistance testing on orthotropic steel details conducted 
across the world can be found in the work by Kolstein (2007). Tests have included small 
specimens of rib/deck to test the rib-to-deck weld (RD), rib/FB sub-assemblies for testing out-of-
plane bending, and FBs with sections of ribs for in-plane bending tests. Figure 10 1 (a) and (b) 
show two tests conducted by Kolstein. 
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 (a) (b) 

Figure 10-1 Photos of Fatigue Test Setups Conducted by Kolstein (a) Out-of-Plane Bending 
of Rib to Floorbeam Subassembly (b) Combined In-Plane and Out-of-Plane Bending of 

Floorbeam Subassembly with Ribs 

The following recommendations are made with respect to fatigue acceptance testing for OSD 
connection details. The authors believe they are issues that, at a minimum, should be considered 
in any acceptance testing program. They are listed in no particular order. 

• The applied load scheme must accurately simulate the actual in-service stress range cycle. 
Hence, stress reversals and proportions of stress (e.g., in-plane and out-of-plane stresses) 
must be simulated. It is acceptable to test at load ranges higher than observed in the field to 
assess fatigue damage. However, modes of failure should not be altered by increasing the 
load range (i.e., change the crack orientation and type). 

• The specimen must be fabricated using the same procedures as to be used in the field. 
Caution must be used if the fabricator who makes the test specimen is different than the 
fabricator who will make the panels for the actual bridge. If this is the case, it must be 
demonstrated that the performance of the panels is not affected. 

• Instrumentation should be installed at locations that would ensure the measured data are 
comparable to some defined standard. For locations where the nominal stress approach to 
fatigue evaluation is not applicable, researchers should consider using methods 
recommended by IIW or other documented methods.  

• The boundary conditions must ensure that the behavior of the specimen when loaded is 
consistent with the behavior anticipated in the field. Modes of failure should not be altered by 
the boundary conditions used to support the specimen. 

• A statistically sufficient number of data should be collected from each detail of interest. Data 
analysis must be conducted in a manner to provide level of safety consistent with the 
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AASHTO LRFD Specifications. That is, nominal design resistance must provide 97.5 
percent confidence of survival for finite life.  

• Measured strains and displacements should be compared to the results of FE analysis. Any 
significant discrepancies (e.g., greater than 10 percent) should be examined and the reasons 
either corrected or justified. 

• Prototype specimens are also useful, as they present full-scale versions that can be evaluated 
for future in-service inspectability, ease of construction, and reveal unanticipated problems. 

 

10.3. TESTING OF WEARING SURFACES 

Based on the common types of failures in the surfacing systems discussed in Chapter 9, different 
types of tests have been devised to establish surfacing properties, as well as performance as a 
composite system. Several acceptable tests have emerged, even if none of them has been 
standardized. Tests include: (a) static flexural tests of the wearing surface-deck plate composite 
specimen at different test temperatures, (b) flexural fatigue tests of wearing surface-deck plate 
composite specimens conducted at several test temperatures to reflect temperature extremes, (c) 
direct pull-off bond tests, (d) resistivity tests, and (e) rutting tests.  

These tests allow investigation of composite action and deflection ratios at the various test 
temperatures. The fatigue tests will allow investigation of cumulative damage in the surfacing 
material. The bond pull-out test is typically used to establish the tensile bond characteristics for 
acceptable surface preparation and quality control. Resistivity tests allow quantification of the 
extensive nature of tensile cracking in the surfacing. The rutting tests are typically used for 
asphalt materials to determine propensity to deform permanently under heavy wheel loads due to 
local contact shear stresses. In addition to laboratory testing, a small section on field testing will 
also be included (if this is an option available to the designer of the wearing surface system). 

10.4. FULL SCALE PROTOTYPES 

For the design and construction of major bridge projects, it is often prudent to perform full-scale 
prototype testing to verify the design prior to mass production of orthotropic steel components. 
Prototype tests verify the performance of the design, from engineering to construction, and 
reduce risk of unforeseen circumstances compromising the service life or causing delays. But 
ultimately, this is a decision to be made by the owner with consideration of cost, schedule, and 
risk.  

The size, aspect ratio, and overall detailing of prototype specimens should be of sufficient 
proportions to ensure that they can be used to accurately predict the behavior of the in-situ deck 
system. This statement may suggest to the reader that full-scale testing of multi-span deck 
systems is always required. However, this is not necessarily true. If properly designed, an 
experimental program that utilizes smaller subassembly specimens can produce valuable and 
accurate data. This is an attractive option, as full-scale testing is expensive and can really only be 
completed by a limited number of laboratories in the United States.  

However, this leads to the question of what constitutes a well-designed program for testing 
subassembly specimens. First, however, it must be recognized that testing is not only intended to 
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gain more information on the known problem areas. For example, it must be determined which 
welded details are recognized as being a “problem” detail for fatigue resistance.  Another 
objective, and possibly a more important one, is to reveal those problems that may not be 
initially known.   

Thus, the first challenge is to ensure that all issues that are of concern (i.e., failure modes) are 
well defined and understood. The loading, specimen, and boundary conditions must all allow for 
proper testing of the details of interest. For example, it is well known that the rib-to-floorbeam 
(RF) weld is a critical detail that is subjected to in-plane and out-of-plane stresses. If one 
accurately simulates such stress fields on an individual rib/FB specimen, or multi-rib specimen, 
by applying the appropriate proportions of equivalent forces, a full-scale multi-span specimen 
would not be required and the subassembly test is sufficient. However, if improper boundary 
conditions are applied (i.e., they are different than those in the field), the actual fatigue resistance 
of a joint may be artificially increased, possibly leading to premature cracking in the field. 

As stated, the failure modes that are not always so obvious, nor anticipated by the engineer, are 
also revealed in the testing. The details we may not recognize as problem areas could be entirely 
excluded from a subassembly test unless they are somehow accounted for somewhere in the 
design and analysis process. For example, during the testing of the first prototype OSD panels of 
the Williamsburg Bridge, the initial details used to attached the deck to the FB and those used to 
splice the FB plates of the individual deck panels were found to create severe discontinuities in 
the stress flow in these regions (Connor, 2002). The discontinuities, which were the result of the 
flexibility of the bolted splices, were not captured in the initial FE studies and therefore not 
expected. Hence, these splices were not initially believed to have any significant influence on the 
behavior of the deck. Only after testing of the full-scale multi-span deck were the discontinuities 
created by these joints realized. Had only a subassembly test been conducted with the applied 
load effects determined by FE analysis, a critical failure mode would likely have been 
completely overlooked. 

The above example illustrates the importance of ensuring that the prototype test accurately 
reflects all aspects of the real in-situ conditions to best extent possible. Laboratory tests provide 
for maximum control of loading and instrumentation and allow time for changes to design, but 
field testing provides the data under the as-built conditions for final verification without impacts 
to schedule (assuming success). Unfortunately, there are no established rules for determining the 
size, loading, and boundary conditions that should be used for laboratory testing. One example is 
shown in figure 10-2. 
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Figure 10-2 Test Setup for the Prototype of the Bronx Whitestone Bridge Redecking Tested 
at Lehigh University showing the Deck, Loading Truck, and Loading Guide 

A number of full-scale prototype tests have been conducted in the United States in recent years. 
Relevant projects are summarized in table 10-1. These tests have led to a continual advancement 
in the understanding of behavior and fatigue resistance at critical joints. Unfortunately, most of 
these tests are based on special designs conducted for redecking applications on existing bridges, 
requiring use of internal rib stiffening measures and special cut-out geometries necessitated by 
limited FB clearance. Thus, these are not considered optimum solutions for future application or 
widespread standardization.  

Although NCHRP Project 10-72 is not complete and no formal requirements for such testing 
have been codified, owners would be wise to consider the possibility of testing either complete 
prototypes, or at a minimum, subassemblies of non-proven details. An argument can be made 
that there would not be a need to conduct full-scale testing of multi-span prototype OSD systems 
that are similar to others which: (1) have been tested; or (2) have been demonstrated to be 
successful designs through successful long-term field performance. However, it is emphasized 
that minor changes to details may seem like small changes, but in actuality, can have drastic 
effects on the actual performance of the OSD. 
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Table 10-1 Summary of Recent Full-Scale Orthotropic Deck Tests Conducted in the United 
States 
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11.  DESIGN EXAMPLES 

This chapter demonstrates the implementation of the Manual contents in two design examples: a 
medium-span continuous girder bridge and a long-span cable-stayed bridge. It does not contain 
any new required information relating to the design of orthotropic steel decks (OSD), but rather 
it exemplifies the application of the comprehensive information provided in the preceding 
chapters. These examples include checks on strength, serviceability, and fatigue, with a majority 
of the focus on fatigue. A commercial finite element program is used to perform all modeling 
and analysis.  

Note that the design examples are not complete designs, nor are the designs optimized. They are 
intended to only be a demonstration of the design concepts. The focus is to demonstrate to the 
practitioner the application of Level 3 design (per Chapter 5) by refined analysis. Additionally, 
important design considerations such as the floorbeam (FB) splice, the FB to girder connection, 
and other routine design checks are outside the scope of these examples.  

11.1. EXAMPLE 1 – MULTIPLE GIRDER CONTINUOUS BRIDGE 

This example focuses on the design of the ribs, the deck, and the FB of a medium-span 
continuous girder bridge. Extra attention is paid to the fatigue design of the rib-to-floorbeam 
(RF) connection. The following guidelines/assumptions are made: 

• ASTM A709 Grade 50 Steel is used for all components. 
• A thick bituminous wearing surface (non-structural) is to be used.  
• The bridge is required to carry two traffic lanes with full lane width shoulders. 
• The bridge is three-span continuous, spanning 30.48 m – 42.67 m– 30.48 m (100 ft – 140ft – 

100 ft).  
• Welded rib splices are used. 
• The region of interest is the FB directly over an interior support. 
• No relieving cut-out is used at the RF connection. 
• The following checks are required at the region of interest: 

o Strength: Rib moment capacity. 
o Service: Differential deflection between adjacent ribs. 
o Fatigue: 

 Deck portion of the rib-to-deck weld (RD). 
 Rib portion of the RD. 
 Rib splice. 
 Deck plate splice. 
 Rib portion of the RF. 
 FB portion of the RF. 

• The fatigue checks are made using the finite element method and local stress analysis as 
required (Level 3 Design). 

• Shell elements are utilized in the region of interest, with weld geometries not modeled.  
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11.1.1. Description of the Bridge 

The cross-section for Example 1 consists of four welded plate girders spanning 30.48 m  – 42.67 
m – 30.48 m  (100 ft – 140 ft – 100 ft). The framing plan consists of an OSD stiffened with 
closed trough stiffeners (also called closed longitudinal ribs) spanning 3048 mm (10 ft) 
longitudinally between FBs, as shown in Figure 11-1. 

 

 

Figure 11-1 Three-Span Multiple Girder Example Framing Plan showing Overall 
Dimensions, Girder Spacing and Floorbeam Spacing 

The deck plate is integral with the FBs and the primary girders, which are spaced at 3,360 mm 
(11 ft), with 1,067 mm (3.5 ft) overhangs. The RF for the longitudinal ribs do not include a 
relieving cut-out below the rib. See Figure 11-2 for a graphical representation of the example 
bridge cross-section and various detailing. Detail A in Figure 11-2 shows the rib dimensions. 
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 Section A-A                   Detail A 

Figure 11-2 Multiple Girder Example Cross-Section, Floorbeam Section (Section A-A), and 
Rib Section (Detail A) showing Dimensions for each Component   

The system is analyzed by the finite element method, in accordance with the guidelines 
established in previous chapters. A multi-scale modeling approach is employed, with a fine mesh 
using higher-order elements in the region of interest, while coarsely meshed elements and lower-
order elements are used elsewhere. In refined mesh areas, shell elements are used to model the 
deck plate, rib, and FB. Away from this region, a more coarse mesh of beam and shell elements 
is used. Mesh sizes are defined in accordance with the provisions of the manual to assess the 
stresses at the concentrations, but otherwise are kept relatively coarse to keep the size of the 
model reasonable. 

The erection scheme of this OSD system involves the off-site fabrication of the primary girder, 
FB, deck plate, and longitudinal rib components for a width of the deck plate equal to the girder 
spacing. The individual field sections are then transported to the site where the FBs are 
connected to the adjacent field sections through bolted splices. A longitudinal weld at each splice 
location connects the field section deck plates. For a schematic of the splices, see Figure 11-3. 
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Figure 11-3 Erection Scheme Field Section  showing the Interior Girder and Location of 
Field connections Relative to the Girder 

11.1.2.  Development of the Finite Element Method 

Following the recommendations in this manual, a finite element model is created of the bridge in 
Example 1. A detailed mesh is used for the section of the bridge directly above the first interior 
pier, while the remainder of the bridge is modeled using coarse methods. Figure 11-4 shows the 
full bridge model, with the detailed section at the pier apparent. Figure 11-5 shows a close-up 
view of the detailed section, and Figure 11-6 shows the region of interest with the deck removed, 
exposing the ribs, FBs, and girders. 

 

Figure 11-4 Three-span Finite Element Model showing Overall view of Beam Elements and 
Support Conditions 
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Figure 11-5 Close-up of Detailed Section that is Modeled Using the More Complex 
Configuration to Capture the Localized Behavior 

 

Figure 11-6 Close-up of Detailed Section with Deck Removed to show how the individual 
Girder, Floorbeam, and Rib Element have been Modeled   
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In the detailed section, the girders, FBs, ribs, and deck are all modeled with shell elements. The 
finest mesh size is used at the areas of interest (from a fatigue viewpoint) and the mesh 
transitions to larger sizes further away. The mesh consists of eight-noded thick shell elements in 
the refined areas in order to allow for the stress extrapolation techniques used in fatigue 
evaluation. Thin shell formulation will provide suitable results, but thick formulation should be 
used if available as it includes deformations in the through-thickness direction due to shear.  

The meshing of the FB around the rib is shown in Figure 11-7. The size of the elements directly 
adjacent to the rib is equal to the thickness of the FB, which is 16 mm (5/8 inch). This mesh size 
is maintained for two elements away from the rib, to provide a constant element size for use in 
local stress calculations involving extrapolation. Away from the rib, the mesh is transitioned to 
much larger element sizes in order to limit the total number of degrees of freedom of the model. 
Similarly, not all RF regions are modeled with the finest mesh size. Instead, only a few 
representative connections that are likely to have the highest stresses are modeled with enough 
detail to allow the stress extrapolation technique to be used. A fine mesh is also used adjacent to 
the rib, as shown in Figure 11-7, as this is the location of the FB splice, and fatigue stresses will 
need to be evaluated at this location as well. 

 

Figure 11-7 Meshing Detail of Floorbeam around Rib 

Figure 11-8 shows the rib mesh at the junction with the FB. For clarity, the FB is not shown. 
Similar to the FB, the mesh size is smallest at the connection area, and is transitioned to a larger 
size away from this area. Because the rib thickness is less than the FB thickness (13 mm [ ½ 
inch] versus 16 mm [5/8 inch]), the mesh size guidelines result in a conflict at this location. The 
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width of the elements is set by the size used in the FB, but the length of the elements in the 
longitudinal direction of the bridge is 13 mm (1/2 inch) based on the rib thickness. This aspect 
ratio (≈1.25) does not affect the accuracy of the stresses calculated. 

 

Figure 11-8 Meshing in Rib at Connection Rib-to-Floorbeam (FB) (FB not Shown for 
Clarity) Showing the Increase Discretization in the Vicinity of the FB 

For the remainder of the bridge, only the deck is modeled with shell elements. An orthotropic 
material is applied to account for the extra area and stiffness provided by the rib in the 
longitudinal direction. The girders are modeled with beam elements connected to the deck, and 
are given an appropriate eccentricity to account for the difference in neutral axis locations 
between the deck and the girders. The FBs are similarly modeled. This coarse modeling allows 
the model size to be kept manageable, while enabling accurate stresses to be determined in the 
region of interest. 

11.1.3. Verification of Finite Element modeling 

11.1.3.1. Floorbeam In-Plane Flexure 

The FEA results for the in-plane flexural behavior of the FB are verified using a two-
dimensional Vierendeel model. The Vierendeel model is developed using a two-dimensional 
analysis software. A schematic of the Vierendeel model is shown in Figure 11-9. 
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Figure 11-9 2D Vierendeel Model of FB and Deck Plate illustrating the discretization of the 
Deck Plate and Floorbeam 

The horizontal members at the top of the Vierendeel model (the top chords) represent the deck 
plate. The horizontal members at the bottom (the bottom chords) represent the bottom flange of 
the FB and the non-disturbed web region of the FB (i.e. the portion of the FB web that is below 
the rib cut-outs). The bottom chords and top chords are connected by verticals that are fixed to 
the bottom chords and pinned to the top chords (see Figure 11-10). The upper portion of each 
vertical represents the portion of FB web between the bottom of the rib cut-out and the deck 
plate (i.e. the disturbed portion of the FB web), as well as an effective width of rib that extends 
away from the FB on each side of the web. The lower portion of each vertical represents the 
undisturbed region of the FB web (between the lower chord of the model and the bottom of the 
rib cut-out). The supports for the FB are found at the location of the four girders. The left-most 
support is a pin support, while the other three supports are roller supports. 

 

Figure 11-10 Partial Vierendeel Model and Floorbeam Elevation with the Vierendeel 
Model Superimposed on the Floorbeam to Illustrate the Model 

As can be seen in Figure 11-10 the width of the FB “tooth” varies along the depth of the web. 
This varying width is approximated in the Vierendeel model by using two prismatic members to 
represent the upper portion of each vertical. The upper prismatic member has a width equal to 
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the width of the tooth at the deck. The lower prismatic member has a width equal to the width at 
mid-depth of the tooth. The effective width of deck plate and longitudinal rib used in the 
Vierendeel model is illustrated in Figure 11-11. 

 

Figure 11-11 Illustration of Effective Width of Deck Plate and Rib Used in the Vierendeel 
Model  

To verify the FEA results, a 445 kN (100 kips) vertical point load is applied directly above the 
eighth tooth in the FB (which corresponds to 0.33L of span 2, where L = span length). This is 
shown schematically in Figure 11-12 and Figure 11-13. First, horizontal moments acting on two 
of the most highly-loaded teeth are checked. The moment on a given tooth is checked at a section 
of the tooth right before the rib begins to “radius” (as illustrated in Figure 11-12). The FEA 
moment in a tooth is determined by creating a horizontal slice through a tooth and integrating the 
stresses over the tooth sectional area to arrive at the net moment on the section. A comparison of 
the Vierendeel and FEA teeth moment is shown in Table 11-1. As can be seen from the table, the 
ratios of Vierendeel-to-FEA moments are 0.90 and 0.94 in Tooth 7 and Tooth 10, respectively. 
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Figure 11-12 Floorbeam Elevation Showing the Verification Load, Tooth Numbering, and 
the Girders Represented as Supports for the Model 

 

Figure 11-13 Span 2 of the Vierendeel Model showing Verification Load, Node Numbers, 
and Tooth Numbers for the Model 

Table 11-1 Comparison of Vierendeel and FEA Tooth Moments 

 

Next, vertical stresses acting on a horizontal section through the teeth is checked at the same 
section where the horizontal teeth moments were checked (shown in Figure 11-14). A 
comparison of the Vierendeel and FEA tooth stress (in two teeth) is shown in Table 11-2. On the 
left side of Tooth 7, the Vierendeel stress is 18 percent higher compared to the FEA stress. On 
the right side of Tooth 7, and on the left and right sides of Tooth 10, the Vierendeel and FEA 
stresses are within 5 percent of each other. A schematic of the FEA vertical stress contours in the 
FB is shown in Figure 11-15. It shows that the maximum tensile and compressive vertical 
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stresses, excluding the stress directly below the applied concentrated load, occur at the left and 
right edges of the teeth, near the base of the teeth where the ribs begin to “radius”. 

 

Figure 11-14 Illustration of Horizontal Moment Acting at the Base of a Tooth and at a 
Vierendeel Node Superimposed on the Floorbeam  

 

Table 11-2 Comparison of Vierendeel and FEA Tooth Stresses 
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Figure 11-15 Results of FEA Model of the Floorbeam showing the Vertical Stress Contours 
in the Web and Tooth 

The absolute maximum FEA tensile stress in the tooth is 99.63 MPa, (22.4 kips) and occurs on 
the right side of Tooth 7 along the curved portion at the base of the tooth. This stress is 15 
percent higher than the absolute maximum Vierendeel tensile stress in the teeth (86.81 MPa 
[19.5 kips]). The absolute maximum compressive stress in the tooth is 81.50 MPa (18.3 kips), 
and occurs on the left side of Tooth 7 along the curved portion at the base of the tooth. This 
stress is 6 percent lower than the absolute maximum Vierendeel compressive stress in the teeth 
(86.81 MPa [19.5 kips]). 

11.1.3.2. Bending in Rib at the Floorbeam 

In the preliminary design of this example, the FB spacing was set at 4,572 mm (15 ft) before 
being revised to 3,048 mm (10 ft). This section contains a check that was performed on a model 
with the original 4,572 mm (15 ft) FB spacing, but the conclusions reached are just as valid for 
the final design. 

An estimate of the bending moment in a rib at a FB can be made by assuming a distribution 
factor and a rigid support at the FB. A distribution factor of 0.5 for closed ribs has been shown to 
often result in conservative moments.  

A single wheel load of 71.2 kN (16 kips) is distributed to a single rib using a distribution factor 
of 0.5, resulting in an applied load of 35.6 kN (8 kips). This load is spread along a patch of 250 
mm (10 inches) in length. The equations and methods outlined in Design Manual for Orthotropic 
Steel Plate Deck Bridges (AISC, 1963) are used to determine the resulting moment in a rib. The 
equation given below is used to calculate the moment in a rib at a support when a distributed 
load is present 0.3804 times the FB spacing away. 
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M  =  moment in rib 
S  = Spacing of FBs 
C  = ½ Patch load length 
P  = Total applied force 

For the present case, S = 15’ (4572 mm), C = 5” (127 mm) = 0.4165’ (126.95 mm) 
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The same loading is applied in the Finite Element model, with the patch load centered on one of 
the two center ribs in a panel. The loading is applied at 0.3804 times the panel length away from 
the FB. The moment in the rib is found by integrating the stresses in the shell elements 
comprising the rib and a portion of the deck extending half-way to the adjacent rib. The 
integrated moment is found to be -14.8 kN-m (-10.9 kip-ft). This is in very good agreement with 
the value calculated by the method given in the AISC publication. 

11.1.4. Service Limit States Checks 

As specified in Section 5.2.2 of this manual, the AASHTO Service I limit state must be satisfied 
for overall deflection limits of the deck plate, the ribs, and relative deflection between adjacent 
ribs. The relative deflection limit is set as 2 mm (0.1 in.) and is checked at the mid-span of the 
ribs between the shell modeled FBs. Dead load and live load are applied to the model, with the 
live load being an unfactored HL-93 design truck placed at various transverse locations with the 
rear axle centered at the mid-span between the FBs.  

Enveloping the load cases considered, the maximum relative deflection is found to be roughly 
0.5 mm (0.02”), which is well below the allowable limit. 

11.1.5. Strength Limit State Checks 

The negative moment capacity of a rib located between the girders at an interior support is 
checked. The loading used to create the maximum negative moment at the RF consists of an 
AASHTO design truck with a 4300 mm (14 ft) rear axle spacing and the 9.34 kN/m (0.64 klf) 
notional live loading applied across a lane width of 3048 mm (10 ft). The truck is placed so that 
the rear set of axles are equidistant from the FB. This loading can be placed at various transverse 
locations to produce maximum moments at different ribs. As specified in this manual, the 142 



211 
 

kN (32 kip) axles are split into two 71 kN (16 kip) axles spaced 1220 mm (4 ft) apart. A pressure 
of 275 kPa (40 psi) is used for the two front tires, which are each a 250 mm (10 inch) square 
patch, and also for the remaining eight rear tires, which are each a 510 mm (20 inch) wide x 250 
mm (10 inch) long patch.                

The effective width of deck plate to use is found in Section 4.3of this Manual. An OSD with 
closed ribs is classified as a non-composite box section in AASHTO LRFD, and Eq. 6.12.2.2.2-1 
gives the equation for Mn. Since the ribs can not buckle laterally, the equation results in Mn being 
equal to the moment at first yield.  

Examining the longitudinal stresses at the bottom of the rib (the extreme fiber in bending) under 
appropriate load factors, it is apparent that all of the stresses, even the concentrations due to the 
connection of the rib to the FB, are well below the yield stress. Alternatively, the moments can 
be extracted from the ribs by integrating over the effective width of the rib, and these moments 
can be compared with the yielding moment for the section. 

11.1.6. Fatigue Limit State Checks 

The finite element model developed for Example 1 is analyzed to find the live load fatigue stress 
range for details of OSDs with ribs without cut-outs. The first five types of details illustrated in 
Table 5-1 of Chapter 5 are examined and compared with their constant amplitude threshold 
allowable stress ranges for the applicable category, which can also be found in Table 5-1.  An 
HL-93 design truck with 9000 mm (30 ft) between centerlines of the rear axles groups is used in 
accordance with the AASHTO LRFD fatigue specifications and the guidelines found in the 
previous chapters. AASHTO LRFD specifies that the 142 kN (32 kip) axles be split into two 71 
kN (16 kip) axles 1220 mm (4 ft) apart as illustrated in Figure 5-1. This results in a uniform tire 
pressure of 275 kPa (40 psi), which is distributed over a 250 mm (10 inch) square patch for the 
two 17.75 kN (4 kip) wheels, and over a 510 mm (20 inch) wide x 250 mm (10 inch) long patch 
for the eight 35.5 kN (8 kip) wheels. This loading model is altered slightly to account for the 
distribution of the load through the wearing surface and one half of the deck plate, as allowed in 
Section 5.5.1.1 of this manual. At the ends of each tire edge, an amount equal to the distance 
from the top of the wearing surface to the mid-depth of the deck is added, and the pressure is 
then altered to result in the correct total load for the wheel. An impact factor of 15 percent is 
applied to all loadings, as well as the infinite life fatigue load factor of 2.25 where applicable 
(see Section 5.3).  

Table 11-3 summarizes the results from the analysis, which will be described in the subsequent 
sections. 
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Table 11-3 Summary of Fatigue Checks for Example 1 

 

11.1.6.1. Rib-to-Deck (RD) Weld 

To get the maximum stress range in the rib-to-deck weld (RD), a single static loading of one rear 
wheel patch is applied. The wheel load is centered on one leg of a rib, as illustrated in Figure 
11-16, and applied at mid-span of the panel between FBs (note the width of the wheel patch is 
shown, not the distribution of the load through the wearing surface and one half of the deck 
plate). A schematic showing the longitudinal position of the loading is shown in Figure 11-17. 
The locations of interest are the deck plate at the rib connection directly under the load, and the 
rib at the deck connection in the rib leg opposite the load (see Figure 11-18 and Figure 11-19). 

 

Figure 11-16 Transverse Wheel Location to Produce the Largest Impact on the Rib-to-deck 
Weld 

 510 mm
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Figure 11-17 Longitudinal Wheel Location to Produce the Largest Impact on the Rib-to-
deck Weld 

The stress results from the model show a fairly linear relationship up to the points under 
consideration, so no extrapolation is used for calculating the stress range at this location.  

Figure 11-18 and Figure 11-19 show the stress contours plotted on the deck plate and rib portions 
of the connection, respectively. In Figure 11-18, the stresses are in the element local y-direction, 
which is the transverse direction of the bridge. In Figure 11-19, the stresses are in the element 
local x-direction, which is the direction normal to the weld connection with the deck plate. 

 

Figure 11-18 Results of FEA Model of the Rib-to-deck Weld showing the Local Stress 
Contours in the Deck (in MPa) 
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Figure 11-19 Results of FEA Model of the Rib-to-deck Weld showing the Local Stress 
Contours in the Rib (in MPa) 

The nominal stresses are extracted from the model and then multiplied by the appropriate load 
factors to arrive at the stress range to compare with the allowable stress range. The nominal 
stress found from the model for the deck plate location is 21.6 MPa (3.1 ksi), while for the rib 
plate the stress value is 13.1 MPa (1.9 ksi). The calculation of the factored force effect is shown 
below, with 2.25 being the infinite life load factor, and 1.15 being the 15 percent dynamic 
allowance for fatigue. 

 MPaMPaf DECK 9.55)6.2115.1(25.2)( =×=∆γ  
 

 MPaMPaf RIB 9.33)1.1315.1(25.2)( =×=∆γ  

As seen in Table 11-3, the calculated stress ranges of 55.9 MPa (8.1 ksi) in the deck plate and 
33.9 MPa (4.9 ksi) in the rib plate are both below the allowable stress range of 69.0 MPa (10 
ksi). Note that for this example, the minimum stresses are 0 MPa. Where minimum stresses are 
less than zero, they should be included. The total stress range is the difference between the 
maximum and minimum stress at the detail of concern. 
 

11.1.6.2. Rib splice 

The rib splice is assumed to be located at 0.3 times the span length, roughly 1,320 mm (52 
inches), from the support. This location is chosen due to its proximity to the dead load 
contraflexure point. Two static loadings of the entire truck are applied to get the stress range for 
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the rib splice; one for the maximum stress, and the other for the minimum stress. The wheels are 
centered on the rib as shown in Figure 11-20. A schematic illustrating the longitudinal position 
of the wheels for the maximum and minimum loadings is shown in Figure 11-21 (a) and (b), 
respectively. The maximum stress is generated when the front wheels of the rear axle group are 
directly over the splice. The minimum stress is found when the rear wheels are placed about 0.25 
of the span length on the other side of the FB. The base of the rib is the location of the maximum 
stress. 

 

Figure 11-20 Transverse Wheel Location to Produce the Largest Impact on the Rib Splice  

 
(a) 

 
(b) 

Figure 11-21 Longitudinal Wheel Locations to Produce the Largest Impact on the Rib 
Splice  

There was no discontinuity in the stress field at this location, so the actual stress from the model 
was used (i.e. no extrapolation was required). Unfactored force effects of 12.97 MPa (1.88 ksi) 
and -4.7 MPa (0.68 ksi) are extracted from the model and are used to calculate the stress range to 
compare with the infinite life fatigue threshold stress, as shown below. 

[ ]{ } MPaMPaMPaf SPLICERIB 3.34)7.4(97.1215.15.1)( =−−×=∆ −γ  

 510 mm510 mm



216 
 

As seen in Table 11-3, the calculated stress range of 45.7 MPa (6.6 ksi) in the rib plate is less 
than the 48 MPa (7.0 ksi) allowable stress for a welded splice. Figure 11-22 shows the stress 
field in the vicinity of the rib splice for the loading causing the maximum (tensile) portion of the 
stress range. The stresses are in the element local y-direction, which is the longitudinal direction 
of the rib. 

 

Figure 11-22 Results of FEA Model of the Rib Splice showing the Stress Contours  
(Maximum Stress Portion of Stress Range, in MPa) 

11.1.6.3. Deck Place Splice 

To get the maximum stress range in the longitudinal deck plate splice, a single static loading of 
one front wheel patch is applied. The wheel load is applied at mid-span of the panel between FBs 
and centered between ribs, as illustrated in Figure 11-23. A schematic illustrating the 
longitudinal position of the loading is shown in Figure 11-24. The location of interest is the deck 
plate directly under the load. 

 

Figure 11-23 Transverse Wheel Location to Produce the Largest Impact on the Deck Plate 
Splice  

 250 mm
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Figure 11-24 Longitudinal Wheel Location to Produce the Largest Impact on the Deck 
Plate Splice  

Again, there is no discontinuity in the stress field at this location, so no extrapolation is required 
and the actual stress from the model is used to calculate the factored force effect, as shown 
below. 

MPaMPaf SPLICEDECK 0.40)4.1515.1(25.2)( =×=∆ −γ  
 

As seen in Table 11-3, the calculated stress range of 40 MPa (5.8 ksi) in the plate is less than the 
69 MPa (10.0 ksi) allowable stress for a welded splice. Figure 11-25 shows the stress contours in 
the region of interest. The stresses are in the element local y-direction, which is the transverse 
direction of the bridge. 

 

Figure 11-25 Results of FEA Model of the Deck Plate Splice showing the Stress Contours 
(in MPa) 
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11.1.6.4. Rib-to-Floorbeam (RF) Weld – Rib detail 

The location of the loading for the rib portion of the connection between the rib and FB is based 
on the continuous beam influence line for bending at a support. The wheels are centered on the 
rib as shown in Figure 11-26. A schematic illustrating the longitudinal position of the wheels for 
the loading is shown in Figure 11-27. The maximum stress occurs when the second set of axles 
straddle the FB, and the location of the maximum stress is near the bottom of the rib. 

 

Figure 11-26 Transverse Wheel Location to Produce the Largest Impact on the Rib-to-
Floorbeam (RF) Weld (at the Rib) 

 

Figure 11-27 Longitudinal Wheel Location to Produce the Largest Impact on the Rib-to-
Floorbeam (RF) Weld (at the Rib) 

Due to the discontinuity from the FB connection at this location, a stress concentration is present. 
Stresses in the rib are extrapolated to the FB intersection, according to this Manual’s guidelines 
in Chapter 5 (Eq. 5-5), using the following equation: 

21 5.05.1 σσσ −=  (5-5) 

Where σ1 and σ2 are the stresses at the midpoint node locations (0.5 t and 1.5 t, respectively) 
identified in Figure 11-28. 

 510 mm510 mm
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Figure 11-28 Shell Elements near the Rib-to-Floorbeam (RF) Connection showing the Node 
Locations used for Extrapolation of the Local Structural Stress 

This extrapolation is performed around the entire perimeter of the rib at the connection with the 
FB. At the location of maximum stress, the Node 1 location shown in Figure 11-28 has a value of 
19.1 MPa (2.8 ksi), while Node 2 has a value of 11.59 MPa (1.7 ksi). The calculation of the 
unfactored force effect by extrapolation at the location of maximum stress, as well as the 
calculation of the factored force effect to compare with the infinite life fatigue threshold stress, is 
shown below. 

 MPaMPaMPar 86.22)59.11(5.0)1.19(5.1 =−=σ  
 

 MPaMPaf DIAPHRAGMRIB 5.39)86.2215.1(5.1)( @ =×=∆γ  
 
Table 11-3 shows that the calculated stress range of 39.5 MPa (5.7 ksi) in the rib plate is less 
than the 69.0 MPa (10 ksi) allowable stress for a welded connection. Figure 11-29 shows the 
stress contours in the rib for the maximum component of the stress range. The stresses are in the 
element local y-direction, which is the longitudinal direction of the rib. 

Floorbeam Centerline 
(perpendicular to rib) 
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Figure 11-29 Results of FEA Model of the Rib to Floorbeam Weld showing the Rib portion 
of the Model (Maximum Component of Stress Range) (Rib, in MPa)  

11.1.6.5. Rib-to-Floorbeam (RF) Weld – Floorbeam Detail  

In order to obtain the stress range in the FB at the rib to FB weld, a series of truck loads are 
placed on the model at 50 mm (2 inch) increments to capture the location of the maximum and 
the minimum stresses. For the transverse position of the truck, the wheels are centered on the rib 
wall as shown in Figure 11-30. A schematic illustrating the longitudinal position of the wheels 
for the maximum and minimum loadings is shown in Figure 11-31. The maximum stress is 
generated when the rear wheel loads are about 0.5 times the span past the FB. The minimum 
stress occurs when the middle axles are placed about 0.5 times the span away from the FB, with 
the front axle in the span on the other side of the FB. The location of the maximum stress is near 
the bottom of the rib. 

 

Figure 11-30 Transverse Wheel Location to Produce the Largest Impact on the Rib-to-
Floorbeam (RF) Weld (at the Floorbeam)  

 510 mm510 mm
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Figure 11-31 Longitudinal Wheel Location to Produce the Largest Impact on the Rib-to-
Floorbeam (RF) Weld (at the Floorbeam) 

Due to the discontinuity in the FB connection at this location, stresses in the FB plate are 
extrapolated to the rib intersection according to this manual’s guidelines. The calculation of the 
unfactored force effect by extrapolation, as well as the calculation of the factored force effect to 
compare with the infinite life fatigue threshold stress, is shown below. 

MPaMPaMPa 72.6)02.4(5.0)82.5(5.1max =−=σ  
 

MPaMPaMPa 7.9)52.7(5.0)97.8(5.1min −=−−−=σ  
 

[ ]{ } MPaMPaMPaf WELDDIAPHRAGM 3.28)7.9(72.615.15.1)( =−−×=∆ −γ  
 
As seen in Table 11-3, the calculated stress range of 28.3 MPa (4.1 ksi) in the rib plate is less 
than the 69 MPa (10 ksi) allowable stress for welded connections. Figure 11-32 shows the stress 
contours in the FB for the minimum component of the stress range. The stresses are in the 
element local y-direction, which is the direction normal to the weld connection made with the 
rib. 
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Figure 11-32 Results of FEA Model of the Rib to Floorbeam Weld showing the Rib to 
Floorbeam (RF) Weld for the Floorbeam Portion of the Connection (Minimum Component 

of Stress Range, in MPa) 

11.1.7. Optimizing the Design 

The design shown in this example contains dimensions that can potentially be improved upon to 
obtain an optimized design. The rib thickness of 13 mm (1/2 inch) and the FB spacing of 3,048 
mm (10 ft) are required to satisfy the fatigue checks at the rib splice and the rib-to-floorbeam 
connection. Alternatively, the geometry of the rib could be altered. By using a deeper rib, the 
thickness of the rib could likely be made smaller and the rib span length made longer. This 
decision may result in a lighter and more economical design. 

11.2. EXAMPLE 2 – CABLE-STAYED BRIDGE 

This example focuses on the design of the ribs, deck plate, and floorbeam. Extra attention is paid 
to the fatigue design of the RF connection.  

The following guidelines/assumptions are made: 

• ASTM A709 Grade 345 (Grade 50) Steel is used for all components. 
• A thin polymer wearing surface (non-structural) is to be used.  
• The bridge is required to carry four traffic lanes.  
• The bridge is a cable stay bridge, with a main span of 460 m (1500 ft).  
• The region of interest is a four-panel section of the bridge in the main span. 
• A relieving cut-out is to be used at the RF connection. 
• The bridge is to be designed for finite life, with an (ADTT)SL equal to 485. 
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• The maximum dead and live load axial forces in the deck plate (per rib strut) due to the cable 
supports are 1,025 kN (230 kip) and 380 kN (85 kip), respectively. 

• The following checks are required at the region of interest. 
o Strength: Rib axial force capacity. 
o Service: Overall rib deflection. 
o Fatigue. 
o Rib portion of the RF. 
o FB portion of the RF. 
o Rib wall at the termination of the weld to the FB. 
o Free edge of the FB cut-out.  

• The fatigue checks are to be made using the finite element method and concentration stress 
analysis as required. 

Shell elements are to be utilized in the region of interest, with weld geometries not modeled.  

11.2.1. Description of Bridge 

The overall structural system consists of two edge girders supported by cables along each side 
with an OSD stiffened with closed ribs spanning between FBs, as seen in Figure 11-33 and 
Figure 11-34. The FBs are spaced at 4,572 mm (15 ft).  

In this design, the FB cut-outs have additional relieving cut-outs below the longitudinal ribs, 
since the rib spans cause moderate rotations at the FBs. The cut-out is comprised of several 
curved cuts of varying radii and provides a minimum gap of 13 mm (0.5 inch) between the FB 
and longitudinal rib. Detail A in Figure 11-34 shows the dimensions of the rib and the relieving 
cut-out. 

 

Figure 11-33 Cable-stayed Example Framing Plan Excerpt showing Overall OSD Panel 
Geometry 
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Figure 11-34 Cable-stayed Example Cross-Section and Detailing showing the Floorbeam, 
Trapezoidal Rib, and Cut-out Dimensions 

11.2.2. Development of the finite Element Method 

Following the recommendations in this Manual, a finite element model of a portion of the cable-
stayed bridge described above is created. The model is comprised of four  4,572 mm (15 ft) 
spans for a total of 18.3 m (60 ft), with five FBs being modeled. Spring supports modeling cable 
stay direction and stiffness are placed at every other FB (six total). Additional supports are added 
to react to the longitudinal forces and to keep the bridge from moving transversely. Figure 11-35 
shows an overall view of the model. 

The entire model utilizes eight-noded thick shell elements. The mesh size is made smallest in the 
regions of interest and transitioned to larger sizes further away. This keeps the degrees of 
freedom, and consequently the model run time, as small as practical while still obtaining valid 
results in the regions of interest. The eight-noded element is required in the refined areas to 
perform the stress extrapolation techniques used in the fatigue evaluation. For simplicity, these 
elements are used throughout the model, so as to avoid transition difficulties. 

A detailed mesh is used at two locations; the intersection of two interior ribs with a cable-
supported FB, and the intersection of two ribs near one edge girder with a cable supported FB. 
These two finely meshed areas can be seen in Figure 11-36, which shows a portion of the model 
with the deck plate removed. 
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Figure 11-35 Cable-stayed Bridge Section Model showing Overall view of Deck, Floorbeam 
and Girder Meshing 

 

Figure 11-36 Close-up of Detailed Section with Deck Removed to show how the individual 
Girder, Floorbeam, and Rib Element have been Modeled. Gray Areas Indicate High Mesh 

Density 
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Figure 11-37 shows a typical refined mesh at the rib-deck-Floorbeam (RDF) intersection. As in 
Example 1, the size of the elements in the FB web directly adjacent to the rib is made equal to 
the thickness of the web, which is 16 mm (5/8 inch). This mesh size is maintained for two 
elements away from the rib, to provide a constant element size for use in the stress calculations 
involving extrapolation. Away from the rib, the mesh is transitioned to much larger element sizes 
to limit the total number of degrees of freedom of the model. 

Figure 11-37 also shows the rib mesh at the junction with the FB web. Similar to the web, the 
mesh size is smallest at the connection area, and is transitioned to a larger size away from this 
area. Because the rib thickness is less than the web thickness (8 mm [5/16 inch] versus 16 mm 
[5/8 inch]), the mesh size guidelines result in a conflict at this location. The width of the 
elements is set by the size used in the web, but the length in the longitudinal direction of the 
bridge, is set at 8 mm (5/16 inch), based on the rib thickness. The resulting aspect ratio of 
roughly 2 is well within the limits of the element types used. 

The deck plate mesh at the junction with the FB web is also seen in Figure 11-37. Similarly to 
the web, the mesh size is smallest at the connection area, and is transitioned to a larger size away 
from this area. Because the deck plate intersects with the ribs and the FB web, mesh size 
conflicts occur at this location. In this example, the thickness of the web and the deck plate are 
similar (16 mm [5/8 inch] and 19 mm [3/4 inch], therefore the aspect ratio is roughly 1.2), so no 
conflict results in that case. At the rib intersection, the width of the deck plate elements is set by 
the size used in the deck, but the length in the longitudinal direction of the bridge is set based on 
the rib thickness. This results in an aspect ratio of 2.4. 

 

Figure 11-37 Section of Model Showing Refined Mesh at Rib-to-Floorbeam Intersection 
including the Adaptation of the Cut-out Smooth Transitions 
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11.2.3. Service Limit State Checks 

Considering only the modeled section of the bridge, the live load deflection of the deck is 
checked against the limit, L/1000, where L is the total bridge span. The worst case loading in the 
model occurs from five lanes placed symmetrically about the bridge centerline. Superimposed 
with each of the lane loads is HL-93 truck loadings. The resulting maximum deflection value is 
calculated to be roughly 200 mm (7 3/4 inch), which is well below the L/1000 value of 460 mm 
(18 inch). Similar deflection checks for the rib and FB are also satisfied.  

11.2.4. Strength Limit State Checks 

The presence of large compression forces in the deck plate due to the stay cables can cause local 
buckling (of the rib or deck plate) or panel buckling. In this analysis the capacity of a single rib 
strut under compression is checked. 

The width to thickness ratios for each component of the rib strut must be checked for local 
buckling.  

When the inequality of the Equation 11-2 is true, local buckling must be considered.  
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The effective width of a component deemed slender by Equation 11-2 is calculated by using the 
following Equation 11-3. 
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For rib webs, conservatively taking f =Fy: 
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The reduction factor for slender elements, Q, is then found by determining the ratio between the 
effective cross-sectional area and the total cross-sectional area of a strut, as seen in Equation 11-
4. 
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Next, the section properties of the strut are found in order to calculate the slenderness ratio of the 
strut and to determine whether to use Equation (11-5) or Equation (11-6).  
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The dead and live load axial forces in the deck plate (per rib strut) were given to be 1,025 kN 
(230 kips) and 380 kN (85 kips), respectively. Using the Strength I load factors, the factored load 
is 2,000 kN (440 kips) for each strut, which is well below the calculated φPn value of 5190 kN 
(1170 kips).   

11.2.5. Fatigue Limit State Checks 

The finite element model developed for Example 2 is used to find the live load fatigue stress 
ranges for details in OSDs with relief cut-outs at four locations. The allowable stress ranges for 
the various details are calculated based on finite life of the details, using the given (ADTT)SL, a 
75-year design life, and n (cycles per truck passing) equal to 1. Note that this example is 
calculating the fatigue life for details not directly connected to the deck plate. Those details 
connecting to the deck plate experience one cycle per axle, i.e. n = 5. See Chapter 5 for 
additional information on the number of cycles.  

As in Example 1, a design truck with a constant 9,000 mm (30 ft) between rear axles groups is 
used in accordance with the AASHTO LRFD fatigue specifications and the guidelines in the 
previous chapters. The 142 kN (32 kip) axles are split into two 71 kN (16 kip) axles 1,220 mm (4 
ft) apart, as illustrated in Figure 5-1. This results in a uniform tire pressure of 275 kPa (40 psi), 
which is distributed over a 250 mm (10 inch) square patch for the two 17.75 kN (4 kip) wheels, 
and over a 510 mm (20 inch) wide x 250 mm (10 inch) long patch for the eight 35.5 kN (8 kip) 
wheels. This loading model is altered slightly to account for the distribution of the load through 
the wearing surface and one half of the deck plate, as allowed in Section 5.5.1.1 of this Manual. 
At the ends of each tire edge, an amount equal to the distance from the top of the wearing surface 
to the mid-depth of the deck is added, and the pressure is then altered to result in the correct total 
load for the wheel. 

The truck is moved along the model in 610 mm (2 ft) increments, with the wheel centered over 
an interior rib to generate an influence line for the stresses. After determining the approximate 
longitudinal positions of the wheels that resulted in the highest stresses, the truck is shifted 
transversely so the wheels are centered over the rib, the rib wall, and the tooth of both an interior 
rib and the edge rib for a limited number of longitudinal positions. From these loadings the 
position of the truck that resulted in the largest stress for each of the four details is determined. 
An impact factor of 15 percent is applied to all loadings, as well as the finite life fatigue load 
factor of 0.75. 

Table 11-4 summarizes the results of the analysis, with explanations of the calculations given in 
the subsequent sections. 
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Table 11-4 Summary of Fatigue Checks for Example 2 

 

The calculation of the allowable stress ranges for the two types of details is performed using 
Section 6.6.1.2.5 of the AASHTO LRFD Bridge Design Specifications (AASHTO 2010). The 
calculations are shown below. 

For the Category C details (RF, rib wall): AASHTO Ref. 
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For the Category A detail (FB cut-out):  

 ksiA 810250×=                  Table 6.6.1.2.5-1 
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11.2.5.1. Rib-to-Floorbeam (RF) Weld – Rib Detail 

The maximum longitudinal stress in the rib at the FB web occurs in the edge rib with the truck 
positioned so the wheel load is located on the tooth (as seen in Figure 11-42a), with the FB 
positioned halfway between the front axle and the first middle axle, as illustrated in Figure 
11-43. The maximum stress range occurs in the rib at the termination of the FB web cut-out, as 
illustrated in the stress contour of Figure 11-38. The stresses are in the element local y-direction, 
which is the longitudinal direction of the rib. 
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Figure 11-38 Results of FEA Model of the Rib to Floorbeam Weld showing the Rib portion 
of the Model for the Longitudinal Stress Contours in Rib Wall (in MPa) 

Due to the stress concentration seen in Figure 11-38, the stress extrapolation technique is used to 
find the unfactored force effect. This value is then multiplied by the appropriate factors to 
determine the factors’ live load stress range, as seen below. 

MPaMPaMPar 75.44)3.29(5.0)6.39(5.1 −=−−−=σ  
 

MPaMPaf ALLONGITUDINRIB 6.38)75.4415.1(75.0)( =×=∆ −γ  
  
Table 11-4 shows that the calculated stress range of 38.6 MPa for this detail is less than the finite 
life allowable stress range of 47.7 MPa for the anticipated ADTT.   

11.2.5.2. Rib Wall at Cut-out 

The maximum vertical stress in the rib at the FB web cut-out also occurs in the edge rib with the 
truck positioned such that the wheel load is located on the tooth, with the FB positioned halfway 
between the front axle and the first middle axle. Figure 11-39 shows the stress contours and 
illustrates the location of the stress. The stresses are in the element local x-direction, which is the 
direction along the perimeter of the rib cross-section. 
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Figure 11-39 Results of FEA Model of the Rib to Floorbeam Weld showing the Rib portion 
of the Model for the Vertical Stress Contours in Rib Wall (in MPa) 

At this location, the stresses are extrapolated to the start of the cut-out to determine the 
unfactored force effect, which is then multiplied by the appropriate factors to arrive at the 
factored live load stress range.  

MPaMPaMPar 3.55)1.24(5.0)9.44(5.1 =−=σ  
 

MPaMPaf VERTICALRIB 7.47)3.5515.1(75.0)( =×=∆ −γ  
 
Table 11-4 shows that the calculated stress range of 47.7 MPa (7.0 ksi) for this detail is equal to 
the finite life allowable stress range of 47.7 MPa (7.0 ksi). 

11.2.5.3. Rib-to-Floorbeam (RF) Weld – Floorbeam Detail 

The maximum stress in the FB web normal to the rib weld also occurs at the edge rib with the 
truck positioned such that the wheel load was located on the tooth, with the FB positioned 
halfway between the front axle and the first middle axle, as illustrated in Figure 11-42a and 
Figure 11-43a. Similarly to the previous two cases, the highest stress occurs at the cut-out 
termination. Figure 11-40 shows the stress contours and illustrates the location of the stress. The 
stresses are in the element local y-direction, which is the direction normal to the weld and free 
edge. 
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Figure 11-40 Results of FEA Model of the Rib to Floorbeam Weld showing the Floorbeam  
portion of the Model for the Stress Contours Normal to the Weld (in MPa) 

The stresses are extrapolated to the start of the cut-out to determine the unfactored force effect, 
which is then multiplied by the appropriate factors to arrive at the factored live load stress range.  

MPaMPaMPar 77.20)66.1(5.0)4.14(5.1 =−=σ  
 

MPaMPaf FLOORBEAM 9.17)77.2015.1(75.0)( =×=∆γ  
 
Table 11-4 shows that the calculated stress range of 17.9 MPa (2.6 ksi) for this detail is less than 
the allowable stress range of 47.7 MPa (7.0 ksi). 

11.2.5.4. Floorbeam Cut-out 

The maximum stress in the FB web around the edge of the cut-out occurs in the edge rib with the 
truck positioned such that the wheel load was located on the web of the rib, as seen in Figure 
11-42b, with the FB positioned halfway between the two middle axles, as illustrated in Figure 
11-43b. Figure 11-41 shows the stress contours and illustrates the location of the largest stress 
range. The stresses are in the element local x-direction, which is the direction along the free edge 
of the cut-out. 
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Figure 11-41 Results of FEA Model of the Rib to Floorbeam Weld showing the Floorbeam  
portion of the Model for the Stress Contours Tangential to Cut-out Stress (in MPa) 

The stresses are extrapolated to the start of the cut-out to determine the unfactored force effect, 
which is then multiplied by the appropriate factors, to arrive at the factored live load stress range.  

MPaMPaMPar 7.75)2.29(5.0)2.60(5.1 =−−−=σ  
 

MPaMPaf CUTOUTFLOORBEAM 3.65)7.7515.1(75.0)( =×=∆ −γ  
 
Table 11-4 shows that the calculated stress range of 65.3 MPa (9.5 ksi) for this detail is less than 
the finite life allowable stress range of 85.2 MPa (12.0 ksi). 
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(a) Centered on tooth 

 

(b) Centered over Rib Web 

Figure 11-42 Transverse Wheel Location to Produce the Largest Impact on the Cut-out  

 

(a) 

 

(b) 

Figure 11-43 Longitudinal Wheel Locations to Produce the Largest Impact on the Cut-out 

11.2.6. Optimizing the Design 

The calculated stress ranges for the various details examined are all less than the finite life 
allowable stress limits, which are found based on an (ADTT) SL of 485. Given a larger daily 
volume of trucks, changes would be required to ensure that the design is adequate. Since the 
strength and serviceability of the OSD system as a whole are sufficient, this implies that the 
geometry of the rib and cut-out should be altered to limit the fatigue stresses. Possible geometry 
changes include increasing the radii of the relieving cut-out and grinding smooth the connection 
of the FB to the rib at the cut-out, as discussed in Section 6.5 of this Manual. Also, more accurate 
(and less conservative) calculation of local stresses could be obtained by employing more 

 510 mm 510 mm

 510 mm 510 mm
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detailed modeling techniques at the critical locations, such as solid element modeling, weld 
profile consideration, and so forth. 
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APPENDIX A 

STANDARD ORTHOTROPIC PANEL DETAILS AND SECTION PROPERTIES 

The standard shape details in this appendix originated in the out-of-print design aid titled 
Orthotropic Bridge Decks Using Bethlehem Standard Ribs published by the Bethlehem Steel 
Corporation, Bethlehem, PA (unknown date) and have been converted to metric with updated 
sketches.   

 

Standard 
Rib 

Designation 

Depth of 
Rib, d 
(mm) 

Width at 
Top, a 
(mm) 

Rib 
Thickness, 

tr (mm) 

Weight per 
meter 
(kN) 

Ixx 
(mm4) 

Yxx 
(mm) 

85 196 282 8 342 1.67x107 76 
86   9 408 1.97x107 76 
87   11 473 2.26x107 77 
95 221 297 8 374 2.30x107 87 
96   9 447 2.72x107 88 
97   11 519 3.13x107 88 
105 245 312 8 407 3.07x107 99 
106   9 486 3.63x107 99 
107   11 564 4.15x107 100 
115 270 328 8 439 3.98x107 111 
116   9 525 4.72x107 111 
117   11 609 5.44x107 112 

 

Figure A-1 Typical Rib Dimensions for Standardized Trapezoidal Shapes 

 



247 
 

 

 

 

 

15mm Thickness Standard Rib Section Designation
a+e 85 86 87 95 96 97 105 106 107 115 116 117
22 Wt. (kN/m) 559 594 630 576 616 655 594 638 664 611 658 705

IX (mm4) 6.31E+07 7.06E+07 7.85E+07 8.29E+07 9.37E+07 1.03E+08 1.06E+08 1.20E+08 1.32E+08 1.29E+08 1.50E+08 1.65E+08
Yx (mm) 161 159 155 181 176 171 199 193 187 216 209 203

24 Wt. (kN/m) 543 576 609 559 595 632 575 614 654 591 635 677
IX (mm4) 6.41E+07 7.28E+07 8.07E+07 8.43E+07 9.58E+07 1.06E+08 1.08E+08 1.23E+08 1.35E+08 1.35E+08 1.53E+08 1.70E+08
Yx (mm) 166 161 157 184 179 174 202 196 190 219 210 208

26 Wt. (kN/m) 530 560 591 544 576 611 560 597 632 575 614 654
IX (mm4) 6.52E+07 7.42E+07 8.21E+07 8.61E+07 9.76E+07 1.08E+08 1.10E+08 1.25E+08 1.39E+08 1.38E+08 1.57E+08 1.74E+08
Yx (mm) 168 164 160 186 181 177 204 198 193 222 216 210

28 Wt. (kN/m) 518 547 575 533 563 594 546 581 614 560 597 633
IX (mm4) 6.63E+07 7.53E+07 8.36E+07 8.72E+07 9.94E+07 1.10E+08 1.12E+08 1.28E+08 1.41E+08 1.41E+08 1.60E+08 1.77E+08
Yx (mm) 170 166 162 188 184 179 207 201 196 225 218 213

30 Wt. (kN/m) 509 536 533 522 550 579 534 566 598 547 582 616
IX (mm4) 6.70E+07 7.67E+07 8.50E+07 8.86E+07 1.01E+08 1.12E+08 1.13E+08 1.29E+08 1.44E+08 1.43E+08 1.62E+08 1.81E+08
Yx (mm) 172 143 164 190 185 181 209 203 198 227 221 216

17mm Thickness Standard Rib Section Designation
a+e 85 86 87 95 96 97 105 106 107 115 116 117
22 Wt. (kN/m) 595 778 667 613 652 692 630 674 717 649 696 741

IX (mm4) 6.49E+07 7.35E+07 8.14E+07 8.54E+07 9.30E+07 1.07E+08 1.09E+08 1.24E+08 1.37E+08 1.37E+08 1.55E+08 1.71E+08
Yx (mm) 167 162 158 185 179 175 202 196 191 220 213 208

24 Wt. (kN/m) 581 613 647 597 633 668 613 652 692 629 657 714
IX (mm4) 6.59E+07 7.49E+07 8.32E+07 8.68E+07 9.87E+07 1.10E+08 1.11E+08 1.26E+08 1.40E+08 1.39E+08 1.59E+08 1.75E+08
Yx (mm) 169 165 160 187 182 178 205 199 194 223 217 211

26 Wt. (kN/m) 568 597 628 582 616 648 597 633 670 611 651 690
IX (mm4) 6.70E+07 7.64E+07 8.50E+07 8.83E+07 1.01E+08 1.12E+08 1.13E+08 1.29E+08 1.43E+08 1.42E+08 1.60E+08 1.79E+08
Yx (mm) 171 167 160 190 185 180 208 202 197 226 220 214

28 Wt. (kN/m) 556 584 611 569 601 632 584 617 651 597 635 670
IX (mm4) 6.81E+07 7.78E+07 8.65E+07 8.97E+07 1.02E+08 1.14E+08 1.15E+08 1.31E+08 1.46E+08 1.44E+08 1.65E+08 1.83E+08
Yx (mm) 173 169 165 192 184 183 210 205 200 229 222 219

30 Wt. (kN/m) 546 572 598 559 588 617 572 604 635 585 619 654
IX (mm4) 6.88E+07 7.89E+07 8.79E+07 9.08E+07 1.04E+08 1.16E+08 1.17E+08 1.33E+08 1.48E+08 1.47E+08 1.67E+08 1.86E+08
Yx (mm) 174 170 142 194 189 185 212 207 202 231 225 220
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Figure A-2 Typical Rib Panel Dimensions for Standardized Trapezoidal Shapes 

  

18mm Thickness Standard Rib Section Designation
a+e 85 86 87 95 96 97 105 106 107 115 116 117
22 Wt. (kN/m) 633 668 705 651 690 730 668 712 755 686 733 779

IX (mm4) 6.67E+07 7.57E+07 8.39E+07 8.76E+07 9.94E+07 1.10E+08 1.12E+08 1.28E+08 1.41E+08 1.41E+08 1.59E+08 1.44E+08
Yx (mm) 170 165 161 188 183 178 206 200 195 224 217 211

24 Wt. (kN/m) 617 651 668 633 670 706 649 689 728 665 709 752
IX (mm4) 6.77E+07 7.71E+07 8.58E+07 8.94E+07 1.02E+08 1.13E+08 1.14E+08 1.30E+08 1.44E+08 1.43E+08 1.63E+08 1.81E+08
Yx (mm) 172 167 164 190 185 181 209 203 198 227 221 215

26 Wt. (kN/m) 604 635 665 619 652 686 635 671 706 649 689 728
IX (mm4) 6.88E+07 7.85E+07 8.76E+07 9.08E+07 1.03E+08 1.15E+08 1.16E+08 1.33E+08 1.47E+08 1.46E+08 1.66E+08 1.84E+08
Yx (mm) 174 170 166 193 188 184 211 206 201 230 223 218

28 Wt. (kN/m) 591 622 649 607 638 668 620 655 689 635 671 708
IX (mm4) 6.99E+07 7.96E+07 8.90E+07 9.19E+07 1.05E+08 1.17E+08 1.18E+08 1.35E+08 1.50E+08 1.48E+08 1.69E+08 1.88E+08
Yx (mm) 175 172 168 195 190 186 214 208 203 232 226 221

30 Wt. (kN/m) 584 610 636 597 625 649 609 641 673 620 657 690
IX (mm4) 7.06E+07 8.07E+07 9.01E+07 9.30E+07 1.06E+08 1.19E+08 1.20E+08 1.37E+08 1.52E+08 1.50E+08 1.71E+08 1.91E+08
Yx (mm) 177 173 170 196 192 188 216 210 206 234 229 223
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APPENDIX B 

ADDITIONAL RECOMMENDATIONS FOR FINITE ELEMENT ANALYSIS 

The finite element analysis (FEA) method has contributed to revolutionary leaps in design and 
research in the field of Mechanics to include work on materials in any state or medium (plasma, 
fluid, solid, heat transfer, two-phase, and many others). The number of software programs 
applicable to structural mechanics is very large and is a testimony to the market demand for 
solving problems in broad or specialized fields. Software companies continue to make 
improvements to render their codes more user-friendly and to enable engineers to solve more 
complex problems.  

For FEA work on orthotropic steel decks (OSD), it is sufficient that a software program be 
capable of analyses in the elastic domain without considerations to material or geometric 
nonlinearity. First order displacements are sufficient.  

General Characteristics of Structural FEA Models 

All 3D structural analysis models (including those used in solving structural problems in a 
continuum such as OSDs, contain either shell or brick elements) at the engineer’s discretion may 
decide and execute the following general procedures:  

• The models organize stiffness or flexibility matrices in which displacements or loads are 
given as inputs, respectively. The sizes of the matrices depend on the number of finite 
elements and the degrees of freedom at element nodes.  

• All stiffness matrices include material properties (E, G, and ν) and geometric properties 
(thickness and element length) of the finite elements that are used to make up for the 
influence coefficients that determine the displacement at any given node. Each node, unless 
otherwise specified, has six degrees of freedom (three translations and three rotations).  

• All element deformations are calculated assuming forces applied at the nodes. Equilibrium is 
tested and enforced at the nodes. Element stresses are calculated from element deformations. 

• Global displacements are integrated along the elements from fixed boundaries. 
• Most modern computer models provide stress contours. 

 
Additional characteristics of finite elements are: 

• Greater accuracy is obtained with greater mesh refinement. 
• Hybrid shell/brick element models are possible with the judicious placement of rigid links at 

the boundaries where they come together. This will be illustrated in later sections. 
 

General Approach to Modeling of Orthotropic Deck Structures 

Current software enables even the smallest engineering firms to produce 3-D models for large 
bridge projects. There is no reason why 3-D models cannot be made for even the smallest 
bridges. Three levels of refinement are generally used: gross, intermediate (local), and stress 
concentration. Different programs offer greater or lesser ease in application of two basic options 
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to address the changes from large-scale meshing to stress concentration meshing: a) 
substructuring, and b) continuous meshing. In the first, separate models are made and the 
boundary conditions from the large are forced onto the smaller model, down to the smallest, 
despite the fact that certain nodes do not coincide. In the second, transition meshing is provided 
to the more refined meshing. The latter method is more time consuming, but it leaves no 
discrepancy relative to boundary conditions. Substructuring, however, may be satisfactory if the 
elements under investigation are far from such boundaries, to the extent that there is nodal 
mismatching, which should be minimized.  

Generally, all OSD bridge models can be designed with shell meshing. Some stress 
concentrations may be better analyzed with brick elements. Shell elements give thickness 
properties for calculation of stress on an element that lies in a plane. They assume that the 
rotations and displacements at each corner of the plate they represent are the same. This is 
illustrated in Figure B-1. 

 

Figure B-1 A Comparison of using Shell Elements verses Brick Elements for Finite 
Element Modeling 

Finite elements that have bulk (three-dimensional) are available in most software programs. The 
basic unit of these elements is the tetrahedron, with four nodes and four faces, but brick and 
prismatic elements are also available. Also, constraint equations (also called master-slave 
relations), are sometimes applied when nodes of adjacent elements do not coincide. 

 

 

 

 

a 

b 

c 

Shell Element 

 

Brick Element 

a 

b 

Nodes are at corners of middle 
plane (continuous lines). All 
extensions and rotations are 

assumed to take place at node 
“a.” Rotations at points “b” and 

“c” are hypothetical and are 
assumed to be the same as at 

node “a.” 

 

 

 

 

 

 

 

Brick elements have eight nodes. 
Nodes are at corners of the brick. 

All nodes have independent 
displacements, including rotations 

at nodes such as “a” and “b.” 
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• Gross Meshes 
 

To reduce the amount of computer time, the finite elements away from the stress 
concentrations or panels on which greater focus is placed, are of large sizes. For example, 
if a bay spans 20 feet, elements of 1/5 this size have been used (i.e., 48 inches). This is 
deemed sufficient to approximate global stiffness. Naturally, mesh size must also be 
consistent with floor beam web and roadway width. It is left to the judgment of the 
engineer to select the appropriate mesh dimensions. 

• Local Meshes 
 

These are typically applied to two or three bays that contain the stress concentrations 
stresses that are being investigated. Meshes are controlled by dimensions such as rib 
widths or depths, or FB depth. They are generally on the order of 6 to 12 inches and may 
vary between deck plate and FBs. 

• Stress Concentrations 
 

The stress concentrations are included in a highly local model, which usually contains 
two ribs and adjacent FB. The ribs’ mesh may be on the order of several feet long to meet 
with the next largest local mesh. In general, the meshes for the deck plate are on the order 
of the deck plate thickness if shell meshing is used, but there must be a gradual cascading 
of dimension sizes to the level of concentrations to exclude aspect ratio effects in the 
intermediate finite elements. Local elements around the concentrations and curved 
surfaces at cut-outs require high mesh refinement, in which brick elements may not be 
avoided. Good analysts always try to keep as close to a 1:1 in aspect ratio, but this is not 
an absolute necessity nor feasible everywhere in the model. Judgment must be exercised 
such that, at location of worst expected effects, aspect ratios are reasonable. 

Suggested Meshes for Stress Concentrations 

Several areas of welded joints in OSDs require careful analysis to perform a fatigue life 
evaluation. These areas are: 

• Rib- to-deck plate weld (RD) (away from the diaphragm). 
• Rib-to-deck plate at the floorbeam joint (RDF) (at the FB). 
• Rib-to-FB (RF) cut-out transition where rib and FB meet. 
• Sharpest curvature of the cut-out.  
• Top and bottom of the cutout and bulkhead terminations. 
• Joint of rib to diaphragm at bottom of round belly rib welded all-around, without a cut-out. 
 
These areas are discussed below, in relation to possible effects and the best ways of evaluating 
them by FEA. 
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Rib-to-Deck Plate Weld (RD) 

Modeling of this connection is relatively straight forward and follows the guidance set forth in 
Chapters 4 and 5.   

Rib-to-Deck at the Floorbeam Joint (RDF) 

In Figure B-2, shell meshing is shown for both partial penetration and for complete penetration 
welding of the RDF. This joint consists of a system of two intersecting welds and three 
intersecting planes. 

The mesh shows a node at the root or toe, where the fatigue stress range must be checked (red 
line). The mesh can, and should, be made to model the welds joining the diaphragm as shown in 
Figure B-3. 

 

Figure B-2 Modeling Techniques for the rib-to-Deck (RD) Weld showing a comparison of 
Meshing Techniques 
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Finite element analyses have shown that a relatively thick FB better distributes the stress 
concentration where it takes the greatest proportion of force that engages the deck plate (at the 
leading edge of the tooth). For this distribution to occur in the physical joint, the deck plate 
should be fully joined to the FB at that point, as illustrated in Figure B-4.  This figure shows, in 
plan, shell nodes aimed at characterizing to some degree of accuracy the joint and associated 
stress in conformance with a fully welded condition, and at the root of the 80 percent penetration 
weld where the crack is presumed to start. Brick meshing is thought to be too complicated for 
such detail and unnecessary. The meshing shown allows for stress calculation by extrapolation 
techniques. 

 

Figure B-3 Modeling Techniques for the Floorbeam to Deck Connection Comparing the 
Difference between Thick and Thin Deck Plates  

 

Figure B-4 Shell Nodes Aimed at Characterizing to some Degree of Accuracy the 
Floorbeam to Deck Connection Superimposed on the Connection Detail (Looking Down 

“Through” the Deck Plate, Deck Meshing Shown with Dashed Lines) 
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Rib-to-FB Cut-Out Transition 

Figure B-5 shows a hybrid shell-brick meshing of the transition, where the transition proper is 
idealized with brick elements. The shell elements take over at areas away from the stress 
concentrations. Although shell elements may be satisfactory, they may be too conservative such 
that, if used, the design might be invalidated and a more costly or heavier deck plate alternative 
adopted. The figure illustrates a method for using hybrid meshing only close to stress 
concentrations where it might be needed. Alternately, it can be readily seen how the entire detail 
can be accomplished in shell elements, if the engineer chooses. 

 

Figure B-5 Cut-out Radius Detail showing the Detailed Meshing Transition along the 
Curved Radius of the Cut-out using both Shell and Brick Elements 

The model contains three areas of evaluation: a) at the curve-to-tangent transition, where rib-to 
toe effects are largest; b) at the toe of the weld in the FB; and c) at the principal stresses in the 
sharpest area of the curvature. 
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Bulkhead Terminations 

Two meshes are shown in Figure B-6, one with abrupt and one with gradual transition in the 
bottom termination. For the detail on the left, if round belly is presumed with an all-around weld 
detail, an abrupt transition may not be harmful but it will not likely be possible with a cut-out 
detail shown on the right, for which a gradual transition is presumed. In a round belly all-around 
welded detail, the rib must be sufficiently rigid to keep stresses low at the bottom of the rib. In 
that case, a full depth bulkhead without abrupt transitions may also be used. 

 

Figure B-6 Meshing Strategies for the Cut-out Radius Detail when a Bulkhead Detail is 
Required  

Designers are reminded that, in a cantilever floor beam, the deck plate and web are in global 
tension. In a simply supported beam, partial penetration or even fillet welds may be acceptable, 
depending on stress level. Figure B-7 shows how a shell mesh can be produced to model a FB to 
bulkhead connection through the rib, assuming perfect alignment.  

This simple model does not address possible eccentricity of FB relative to the bulkhead. This is 
considered satisfactory as the both the Design and Fabrication chapters (Chapters 5 and 7, 
respectively) indicate that if a bulkhead is used it must be in alignment with the floorbeam.  
Moreover, current knowledge of such a misaligned detail is incomplete and needs to be 
expanded. 
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Figure B-7 Node Alignment through the Bulkhead Detail at the Rib 

All-Around Weld with Round Belly Rib 

Figure B-8 shows the effects of rib rotation and VQ/I on a round belly rib welded all-around. The 
VQ/I effects are shown for a cantilever floor beam. Several checks must be conducted for this 
detail: 

• Longitudinal effects at the bottom of the rib at the weld toe in the rib. 
• Combined effects in the FB at the bottom of the rib. These effects are non-proportional. 
• Stress concentrations at the tangent-to-curve areas and in the weld toe in the FB. 

 
In a simply supported beam, the global tension in the diaphragm would become compression. 
The concentration stresses at the tangent-to-curve would be reversed. The direction of the 
principal stresses, at these points, is at a sharp angle with the weld line, as graphically indicated. 

Fatigue criteria for dealing with this issue are discussed in Chapter 5, as are general criteria for 
dealing with non-proportionality. 

Figure B-9 shows suitable shell meshing of this area. The weld toe line can be used as a delta 
meshing point with divergent shell meshes going from the center of the diaphragm to opposite 
meshing nodes in the rib mesh surface. 
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Figure B-8 Detail of the Rib-to-Floorbeam (RF) Connection showing the Effect of Rib 
Rotation and Floorbeam Shear on a Rounded Rib  

 

Figure B-9 Suitable Shell Meshing in vicinity of a Rounded Rib 
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APPENDIX C 

LEVEL 1 STANDARD DETAILS 

Development of a Standard Panel Design 

This Appendix demonstrates the application of Level 1 design of an orthotropic steel deck (OSD) 
based on available experimental test data from a previous project. The basis of design is the 
prototype OSD for redecking of the Bronx-Whitestone Bridge, which was tested at Lehigh’s 
ATLSS Research Center in 2002 (ref). This full-scale laboratory test simulated 4.1M cycles of 3 
times the AASHTO HS15 (HS15 = 0.75*HS20) Fatigue Truck plus an additional 2M cycles of 4 
times the HS15, producing effectively 239M cycles of the HS15 loading. Fatigue cracks were not 
found in any of the primary connections, which demonstrates outstanding fatigue resistance and 
verifies the design performance for the given conditions.   

The prototype specimen included a conventional OSD with 343mm deep ribs spaced at 660mm 
and 390/530mm intermediate diaphragms supported by bridge floorbeams with span of 22.5m 
and spacing of 6020mm. Local response of the deck panel at wheel loads plus the interactions of 
the panel with the floorbeams were considered in the testing. Global response (from cable 
deflections) does not impact fatigue performance to large degree and was neglected.   

For future redecking projects with floorbeam span and spacing within the limits of those utilized 
in the prototype test, this can be considered a “standard deck panel” that can be used without 
need for additional refined engineering analysis. The fabrication must be performed with the 
same level of quality that was achieved in the prototype specimen, which requires that tolerances 
and welding satisfy the applicable provisions of AASHTO and AWS. The standard deck details 
are shown in the following drawings. For implementation, owners should consider adoption of 
this standard design and incorporation into their standards.  

It is noted that this prototype design was influenced by the limited available clearance between 
the top of the existing floorbeams and the finished deck surface, which demanded shallow 
diaphragms, large cutouts, CJP welds, and internal rib stiffeners. This design may not be 
optimum when additional clearance is available. The engineer should evaluate the potential cost 
savings of design improvements vs. the cost of fabrication and testing of a new prototype.   
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 Figure C-1 Plan View and Secion of the prototype OSD for redecking of the Bronx-
Whitestone Bridge 
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 Figure C-2 Various Secions and Rib Detail of the prototype OSD for redecking of the 
Bronx-Whitestone Bridge 
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